То же с фракталами. Математический фрактал не просто случайная фигура. Он имеет детальную структуру на всех масштабах увеличения. Часто –
Мандельброт прекрасно сознавал, какую видную роль в предыстории фракталов сыграли польские математики и тот весьма абстрактный подход к анализу, геометрии и топологии, развиваемый и продвигаемый небольшим кружком математиков, многие из которых регулярно встречались в Шотландском кафе во Львове. В этот кружок входили основатель функционального анализа Стефан Банах и Станислав Улам, принимавший активное участие в Манхэттенском проекте создания атомной бомбы и предложивший, собственно, основную идею водородной бомбы. Их единомышленником являлся и Вацлав Серпинский из Варшавского университета, придумавший фигуру, которая была «одновременно канторианской и жорданианской и каждая точка которой была точкой ветвления». То есть непрерывную кривую, которая пересекает саму себя в каждой точке.
Позже Мандельброт в шутку назвал эту фигуру
В настоящее время они считаются ранними фракталами. Мандельброт вдохновлялся ими:
Мой дядя уехал во Францию в возрасте лет примерно двадцати, этим беглецом двигала идея не политическая и не экономическая, а чисто интеллектуальная. Его отталкивала «польская математика», которую тогда Вацлав Серпинский (1882–1969) строил как воинствующе абстрактную область. По глубокой иронии, чьим работам суждено было стать для меня изобильными охотничьими угодьями, когда много позже я искал инструменты для построения фрактальной геометрии? Серпинского! Убегая от идеологии [Серпинского], мой дядя присоединился к наследникам Пуанкаре, правившим в Париже в 1920-е гг. Мои родители были не идеологическими, но экономическими и политическими беженцами; то, что они поехали к моему дяде в Париж, спасло всем нам жизнь. Я никогда не встречался с Серпинским, но его (невольное) влияние на мою семью невозможно ни с чем сравнить[32].
Немногие математики-теоретики, которые интересовались такими понятиями, обнаружили, что степень шероховатости фрактала можно охарактеризовать числом; они назвали это число «размерностью» фрактала, поскольку оно согласуется с обычной размерностью для стандартных геометрических фигур вроде прямой, заполненного квадрата или куба, размерности которых составляют 1, 2 и 3 соответственно. Однако размерность фрактала не обязательно должна выражаться целым числом, так что интерпретация размерности как «числа независимых направлений» уже неприменима. Теперь важно, как фигура ведет себя при увеличении.