Вспомним (глава 11), что существует три вида геометрии: Евклидова, эллиптическая и гиперболическая. Это геометрии пространств с нулевой, постоянной положительной и постоянной отрицательной кривизной соответственно. Тёрстон начал с любопытного факта, который кажется почти случайным. Он заново вспомнил классификацию поверхностей – сфера, тор, 2-тор, 3-тор и т. д., как в главе 18, – и задался вопросом: какие типы геометрии здесь встречаются? Сфера имеет постоянную положительную кривизну, так что ее естественная геометрия – эллиптическая. Одна из реализаций тора – плоский тор – представляет собой квадрат, противоположные стороны которого отождествляются. Квадрат – плоский объект на плоскости, так что его естественная геометрия – Евклидова, а правила склеивания придают плоскому тору тот же самый тип геометрии, каким обладает квадрат. Наконец, хотя это и не так очевидно, естественной геометрией любого тора с двумя или более отверстиями является гиперболическая геометрия. Как-то так получается, что гибкая топология поверхностей сводится к жесткой геометрии – и при этом возникает все три возможных варианта.
Разумеется, поверхности – особый случай, но Тёрстон заинтересовался: не происходит ли чего-то подобного и с трехмерными многообразиями? Поразительная геометрическая интуиция помогла ему быстро понять, что ситуация не может быть настолько простой. Некоторые трехмерные многообразия, такие как плоский тор, являются Евклидовыми. Другие, такие как 3-сфера, – эллиптическими. Есть и гиперболические. Но большинство трехмерных многообразий не относится ни к первым, ни ко вторым, ни к третьим. Тёрстон, не утратив присутствия духа, попытался разобраться почему и обнаружил две причины. Во-первых, для трехмерных многообразий существует
В 2002 г. Перельман разместил на сайте под названием arXiv препринт статьи, посвященной теме, известной как поток Риччи. Эта концепция связана с общей теорией относительности, в которой тяготение представляет собой результат кривизны пространства-времени. Ранее Ричард Хэмилтон уже высказывал мысль о том, что поток Риччи потенциально может дать простое доказательство гипотезы Пуанкаре. Идея состояла в том, чтобы начать с гипотетического трехмерного многообразия, такого, что любая замкнутая кривая в нем сжимается в точку. Такое многообразие можно интерпретировать как искривленное трехмерное пространство в Евклидовом смысле – впервые эта идея была высказана в хабилитационной диссертации Римана (глава 15).
А теперь самое хитрое: попытайтесь перераспределить кривизну так, чтобы сделать ее более равномерной.
Представьте, что вы пытаетесь погладить рубашку. Если вы не позаботитесь о том, чтобы поровнее разложить ее на гладильной доске, на рубашке возникнет множество неровностей и складок. Это области высокой кривизны. В остальных местах ткань рубашки лежит на плоскости ровно, то есть кривизна нулевая. Вы можете попытаться разгладить неровности утюгом, но ткань плохо сжимается и растягивается, так что неровности будут либо сдвигаться на другое место, либо заглаживаться, образуя морщины. Более простой и эффективный метод, не позволяющий неровностям сдвигаться или появляться вновь, состоит в том, чтобы взять рубашку за края и растянуть. Тогда естественная упругость ткани разгладит неровности. Поток Риччи делает нечто подобное для 3-многообразия. Он перераспределяет кривизну из областей, где она высока, в области с более низкой кривизной, как будто пространство пытается сгладить и выровнять свою кривизну. Если все работает как надо, кривизна продолжает перетекать с места на место, пока не станет одинаковой всюду. Возможно, результат окажется плоским, возможно, нет, но так или иначе его кривизна в любой точке должна быть одинаковой.