Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Следовательно, число разбиений числа 5 составляет p(5) = 7. Величина p(n) стремительно растет с ростом n. К примеру, p(50) = 204 226, а p(200) равно внушительному 3 972 999 029 388. Простой формулы для p(n) не существует. Однако можно поискать приближенную формулу, задающую общий порядок величины p(n). Это задача аналитической теории чисел, причем одна из наиболее неподатливых. В 1918 г. Харди и Рамануджан преодолели технические трудности и вывели-таки приближенную формулу – довольно сложный ряд, включающий в себя комплексные корни 24-й степени из единицы. Затем они обнаружили, что при n = 200 одно только первое слагаемое дает первые 6 значащих цифр точного значения. Добавив к нему еще всего лишь 7 слагаемых, они получили число 3 972 999 029 388,004, целая часть которого равна точной величине. Они заметили, что этот результат «позволяет однозначно предположить, что можно получить формулу для p (n), которая не только будет выявлять его порядок величины и структуру, но и может быть использована для вычисления его точной величины для любого n», после чего доказали именно это. Должно быть, это один из редчайших случаев, когда поиск приближенной формулы в результате привел к точной формуле.

Кроме того, Рамануджан нашел в разбиениях кое-какие замечательные закономерности. В 1919 г. он доказал, что p(5k + 4) всегда делится на 5, а p(7k + 5) всегда делится на 7. В 1920 г. он заявил еще несколько аналогичных результатов: к примеру, p(11k + 6) всегда делится на 11; p(25k + 24) делится на 25; p(49k + 19), p(49k + 33), p(49k + 40) и p(49k + 47) делятся на 49; p(121k + 116) делится на 121. Обратите внимание: 25 = 52, 49 = 72, а 121 = 112. Рамануджан говорил, что, насколько он может судить, такие формулы существуют только для делителей вида 5a7b11c, но это оказалось неверным. Артур Аткин обнаружил, что p (17303k + 237) делится на 13, а в 2000 г. Кен Оно доказал, что соответствия такого рода существуют для всех простых модулей. Еще через год он и Скотт Алгрен доказали, что они существуют для всех модулей, не кратных 6.

* * *

Некоторые теоремы Рамануджана остаются недоказанными и по сей день. Одна из них, «сдавшаяся» около 40 лет назад, особенно значительна. В статье 1916 г. Рамануджан исследовал функцию τ (n), определенную как коэффициент при xn–1 в разложении

[(1 – x) (1 – x2) (1 – x3)…]24.

Таким образом, τ(1) = 1, τ(2) = –24, τ(3) = 252 и т. д. Эта формула исходит из глубокой и красивой работы XIX в. по эллиптическим функциям. Рамануджану τ(n) нужна была для решения задачи о степенях делителей n, и ему необходимо было знать, насколько она велика. Он доказал, что ее величина не превосходит n7, но предположил, что этот результат можно улучшить до n11/2. В качестве гипотезы он предложил две формулы:

τ(mn) = τ(m) τ(n),

если m и n не имеют общих делителей;

τ(pn+1) = τ(p) τ(pn) – p11τ (pn–1) для всех простых p.

С этими формулами несложно вычислить τ(n) для любого n. Луи Морделл доказал их в 1919 г., но гипотеза Рамануджана о порядке величины τ(n) пока сопротивляется всем усилиям.

В 1947 г. Андре Вейль, пересматривая старые результаты Гаусса, понял, что их можно применить к целым решениям различных уравнений. Следуя интуиции и воспользовавшись забавными аналогиями с топологией, он сформулировал серию технически довольно сложных результатов – гипотезы Вейля. Эти гипотезы заняли центральное место в алгебраической геометрии. В 1974 г. Пьер Делинь доказал их, а годом позже он и Ясутака Ихара вывели из них гипотезу Рамануджана. Тот факт, что для обоснования его невинной на первый взгляд гипотезы потребовался такой крупный и новаторский прорыв, указывает на масштаб и глубину интуиции Рамануджана.

Среди самых загадочных изобретений Рамануджана – «ложные тета-функции», которые он описал в последнем письме к Харди в 1920 г.; подробности были позже найдены в его потерянном блокноте. Якоби ввел тета-функции как альтернативный подход к эллиптическим функциям. Они представляют собой бесконечные ряды, которые преобразуются очень простым способом, если к переменной добавляются подходящие константы, а эллиптические функции можно строить путем деления одной тета-функции на другую. Рамануджан определил несколько аналогичных рядов и заявил большое число формул с их использованием. В то время вся идея представлялась всего лишь упражнением в обращении со сложными рядами, не связанным ни с чем больше в математике. Сегодня мы понимаем, что дело обстоит совсем не так. Эти ряды имеют важные связи с теорией модулярных форм, которые возникают в теории чисел и также связаны с эллиптическими функциями.

Аналогичная, но самостоятельная концепция – тета-функция Рамануджана – недавно оказалась полезной в теории струн – самой популярной попытке физиков объединить теорию относительности и квантовую механику.

* * *
Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии