Читаем Жизнь замечательных устройств полностью

Так, считающийся в настоящий момент главным доказательным методом в химии рентгеноструктурный анализ (РСА) также позволяет получать изображения биологически активных молекул с очень высоким разрешением и значительной степенью детализации — зачастую его сравнивают со способом, позволяющим «сфотографировать» молекулу, определив положение атомов в её составе с точностью до одного ангстрема. Более того, за изучение белков и нуклеиновых кислот методом рентгеноструктурного анализа была присуждена не одна Нобелевская премия. Наиболее известна Нобелевская Премия по физиологии и медицине 1962 года, которую получили Джеймс Уотсон, Френсис Крик и Морис Уилкинсон, которые установили двуспиральное строение ДНК именно с помощью рентгеноструктурного анализа. Любопытно, что в этот же 1962 год лауреатами «химической» Нобелевской премии стали Макс Перуц и Джон Кендрю, использовавшие рентгеноструктурный анализ для изучения строения гемоглобина и других белков. Тем не менее, для того чтобы изучить белок или другую биологически активную молекулу с помощью РСА, необходимо получить кристаллический образец предмета исследования. Бывает, что между определением первичной структуры белка и подготовкой кристаллического образца для определения третичной структуры проходят годы, бывает, что белок просто не кристаллизуется. В ряде случаев в процессе кристаллизации белок принимает форму, значительно отличающуюся от той, которая характерна для него в естественном биологическом окружении. Для изучения биомолекул с помощью криоэлектронной микроскопии не нужно готовить кристаллические образцы, это позволяет и снизить время на исследование, и использовать меньшее количество изучаемого образца. То, что для криоэлектронной микроскопии биосистем нужен только раствор, содержащий образец, а свойства такого раствора (кислотность, солевой фон и т. п.) можно менять перед заморозкой, позволяет применять метод для определения строения биомолекулы в тех условиях, которые недоступны для рентгеноструктурного анализа.

Наиболее распространённый среди химиков, изучающих вещества, для которых пока не удалось получить кристалл для изучения методом РСА, или химиков, изучающих химические процессы в растворах, метод ядерного магнитного резонанса (ЯМР), позволяющий различать атомы какого-либо химического элемента в составе разных структурных фрагментов, помогает исследовать биохимические процессы в растворах, предоставляя исчерпывающую информацию об изменениях конфигурации биологически активных молекул. Однако и этот метод ограничен — для его успешного применения нужно получить достаточно концентрированный раствор препарата, поэтому ЯМР можно применять лишь для исследования хорошо растворимых небольших по размеру белков, причём тех, которые растворимы во внутри- или внеклеточной жидкостях, а вот для изучения беков, например, связанных с клеточными мембранами, ЯМР бесполезен.

Изучение больших белков, белков-рецепторов, связанных с клеточной мембраной или межмолекулярных ассоциатов, образованных сразу несколькими биологическим активными молекулами, значительно облегчается (а в ряде случаев становится исключительно возможным) при применении криоэлектронной микроскопии.

Преимуществом криоэлектронной микроскопии является то, что для изучения биологической молекулы этим методом нет необходимости готовить её кристаллический образец, а значит, для анализа требуется очень небольшое количество вещества, метод позволяет анализировать частицы, масса которых находится в диапазоне от десятков килодальтон до нескольких мегадальтон. Разновидность метода — криоэлектронная томография — может изучать и более крупные объекты — от комплекса биологически активных молекул до клеточного органоида и даже клетки. Криоэлектронная микроскопия позволяет изучать структуры не только в статичном состоянии — ионный фон, концентрацию низкомолекулярных веществ и рН охлаждаемого для анализа раствора можно систематически менять, что позволяет определять структуру биомолекул и более сложных биологических объектов в окружении, свойства которого максимально близки их естественному окружению в клетке, метод криоэлектронной микроскопии даже позволяет изучить изменения строения фермента в ходе протекания ферменто-катализируемой реакции (Nature, 2015, 521, 241–245; DOI: 10.1038/nature14365). Результаты таких исследований могут применяться на практике — для детального изучения биохимических процессов, изучения строения патогенных вирусов, создания новых и модификации существующих лекарственных препаратов.

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники