Спустя пять лет после выхода статьи про структуру бактериородопсина, полученную с большим разрешением, Хендерсон представил детальный анализ задач, который требовалось решить для изучения с высоким разрешением не формирующих кристаллические структуры ассоциатов биологически активных молекул (Q. Rev. Biophys., 1995, 28, 171–193; DOI: 10.1017/S003358350000305X). Его выводы сводились к тому, что при применении малоинтенсивного недеструктивного облучения электронами при проведении исследований с помощью электронной микроскопии в присутствии фазового контраста будет возможно определить двумерное положение индивидуальных частиц в плоскости двумерного кристалла и их трёхмерную ориентацию в том, правда, случае, если частицы обладают достаточной молекулярной массой. Выводы Хендерсона были таковы — для биомолекул (и ассоциатов биомолекул) с молекулярной массой больше 50 килодальтон возможно получить образец, содержащий достаточное количество частиц (около 10000 частиц) для усреднения результатов их исследования с помощью электронной микроскопии и определения их строения с атомным разрешением, которое будет составлять ~3 Å. В последующие годы число частиц, необходимых для получения результатов изучения структуры с таким разрешением, постоянно корректировалось в сторону уменьшения, и к началу XXI века Глейзер пришёл к выводу, что минимальное значение молекулярной массы объекта, который можно проанализировать с разрешением в три ангстрема, составляет 20 килодальтон (J. Struct. Biol., 1999, 128, 3-14; DOI: 10.1006/jsbi.1999.4172). Хотя биомолекулы с этим значением молекулярной массы пока еще никому не удалось изучить, и самой тяжелой молекулой, строение которой помог изучить электронный микроскоп, является молекула гемоглобина с молекулярной массой 64 кДа (Nature Comm., 2017, 8, 16099; doi:10.1038/ncomms16099), разрешение, с которым удается изучить строение некоторых молекул, уже составляет величину, меньшую, чем 2 Ангстрема.
Второй из Нобелевских лауреатов 2017 года, Иоахим Франк, еще в середине 1970-х годов стал заниматься фундаментальной проблемой изучения неконтрастированных, некристаллических асимметрических частиц, случайным образом ориентированных в растворе (Ultramicroscopy, 1975, 1, 159–162; DOI: 10.1016/S0304-3991(75)80020-9). Его работа стала основой для дальнейших исследований. Основным способом решить задачу Франк полагал: «…создание условий для выравнивания тех признаков частиц, сигналы которых могут быть четко различимы на фоне значительных шумов…».
В 1977 году Франк с коллегами описал количественный подход, способный обеспечить такое выравнивание с помощью взаимной корреляции сигналов от различных частиц (Ultramicroscopy, 1977, 2, 219–227; DOI: 10.1016/S0304-3991(76)91385-1). Был сделан вывод о том, что существует возможность определить неупорядоченное расположение исследуемых частиц с помощью пучков электронов, мощность которых недостаточна для разрушения самих объектов, и далее выстроить изображение с высоким разрешением, усредняя сигналы, полученные от каждой отдельно взятой частицы. Правомерность такого вывода была продемонстрирована при изучении строения фермента глутаминсинтетазы (Ultramicroscopy, 1978, 3, 283–290; DOI: 10.1016/S0304-3991(78)80038-2).