Читаем Жизнь такая же круглая как и Земля (СИ) полностью

Мы можем проанализировать гармонические составляющие сигнала используя формулу 5.9. Для этого дифференцируем сигнал с производной кратностью в четыре. До тех пор пока не получим синусоидальный сигнал. Находим искомую гармонику, умножив на соответствующий коэффициент. Вычитаем из исходного сигнала полученный гармонический сигнал с данным найденным периодом. Дифференцируем опять полученный после вычитания сигнал до меньшего дифференциала, чем в первый раз. И получаем другую гармоническую составляющую. Так производим, пока не получим все гармонические сигнала. Для наглядности рассмотрим пример, в котором определяются 3 гармонические составляющие.

Пусть искомый сигнал подчиняется следующей функции:

(5.10)

График данной функции представлен на рисунке 5.4.

Рисунок 5.4. – График исходной функции.

Продифференцируем до 8 производной входной сигнал. Это можно сделать используя свойство производной, а именно производная равна делению приращения функции к приращению аргумента.

Рисунок 5.5. – Восьмая производная исходного сигнала.

Полученный сигнал имеет период 15, также как и минимальный период входного сигнала. Найдем амплитуду полученного сигнала:

Используя формулу 5.11, вытекающую из формулы 5.9:

(5.11)

Мы определили, что гармоника с минимальным периодом имеет следующий вид:

(5.12)

Отнимем от исходного сигнала найденную гармонику:

(5.13.)

Получим следующий график функции:

Рисунок 5.6. – График функции J1(t).

Продифференцируем до четвертой производной функцию J1(t). И получим следующий график:

Рисунок 5.7. – График функции четвертой производной от функции J1(t).

Как видим из графика функция синусоидальна. Имеет период 80 и амплитуду .

Используя формулу 5.14 получим амплитуду второй гармоники с периодом 80.

(5.14)

Мы определили, что вторая гармоника имеет вид:

(5.15)

От исходной функции отнимем первую и вторую гармонику:

(5.16)

График данной функции представлен на рисунке 5.8.

Рисунок 5.8. – График функции J2(t).

Как видно из рисунка 5.8, мы получили синусоиду, а именно третью гармонику исходного сигнала с периодом 130 и амплитудой . Третья гармоника имеет следующие параметры:

(5.17)

Итак запишем найденную функцию:

(5.18)

Построим график данной функции:

Рисунок 5.9. – График полученной функции.

Построим на одном графике исходную(пунктирную) и полученную функцию (сплошную):

Рисунок 5.10. – Полученная и исходная функция.

Как видно из рисунка 5.10, функции практически идентичны. Проверим, прогнозируется ли функция за пределами наблюдения. Для этого продлим время в исходной и полученных функциях, рисунок 5.11.

Рисунок 5.11. – Прогноз поведения исходной (пунктирной) и полученной функции (сплошной).

Как видно из рисунка 5.11, поведение функции прогнозируется.

Выводы к пятой главе: Получен математический метод прогнозирования процесса в дальнейшем, (за пределами наблюдения). Метод позволяет прогнозировать и те процессы, в которых гармонические составляющие имеют период в два раза и более большие периода наблюдения за процессом.

6. – ФУНКЦИЯ СОСТОЯНИЯ СЛУЧАЙНОГО ПРОЦЕССА И ПРОГНОЗ СЛУЧАЙНОГО СОБЫТИЯ

Существует поток случайного события, происшествие несчастных случаев в цехе Ц2 ММК им Ильича:

Воспользовавшись формулами 4.2-4.4. Пункта 4 данной диссертации для первых шести несчастных случаев. В результате получим амплитудно – периодическую функцию:

Рисунок 6. – Амплитудно периодическая характеристика случайного процесса.

Для гармоник от 100 до 296 найдем функцию состояния случайного процесса, по формуле 6.1, полученной по формуле 4.5.

(6.1)

Рисунок 6.1. – Функция состояния первых 6 событий и прогнозируемого 7 события.

Построим функцию состояния для 2-7 события с прогнозом на 8 событие, по периодам от 100 до 674:

Рисунок 6.2. – Функция состояния первых 2-7 событий и прогноз на 8 событие.

Построим функцию состояния первых 3-8 событий, с прогнозом на 9 событие:

Рисунок 6.3. - Функция состояния первых 3 - 8 событий и прогноз на 9 событие.

Построим функцию состояния первых 4-9 событий, с прогнозом на 10 событие:

Рисунок 6.4. - Функция состояния первых 4 - 9 событий и прогноз на 10 событие.

Построим функцию состояния первых 5-10 событий, с прогнозом на 11 событие:

Рисунок 6.5. - Функция состояния первых 5 - 10 событий и прогноз на 11 событие.

Построим функцию состояния первых 6-11 событий, с прогнозом на 12 событие:

Рисунок 6.6. - Функция состояния первых 6 - 11 событий и прогноз на 12 событие.

Как видно из рисунков 6.1 – 6.6, прогнозируемое событие происходит в точках качественного перехода функции состояния случайного события.

6.1. ТОЧКИ КАЧЕСТВЕННОГО ПЕРЕХОДА ФУНКЦИИ.

На рисунке 6.7, представлена синусоида с 4 точками качественного перехода:

Рисунок 6.7. – Точки качественного перехода.

На рисунке 6.7, первая точка соответствует переходу количества в качество, а именно, функция до 1 точки была отрицательная, а после положительная. Вторая точка соответствует переходу от возрастающей функции в убывающую. Третья точка соответствует переходу от положительного значения в отрицательное. Четвертая точка соответствует переходу от убывающей функции в возрастающую.

Перейти на страницу:

Все книги серии Пляс теория

Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"
Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"

Я пришел к блаженству применяя мою теорию. Затем, прочитав Новый Завет.  Я был поражен, что  моя теория более подробно раскрывает Новый Завет. Так например, в первой заповеди блаженства сказано - Блаженны нищие духом, ибо их есть Царство Небесное. Что означает нищие духом? Исходя из моей теории нищие духом, - это означает не заставлять себя думать над проблемами, страхами, неприятностями. Ключевое в данной формулировке – не заставлять. Необходимо четко отличать в сознании когда вы заставляете себя думать над проблемой, и когда мысль крутится сама собой в голове. Та часть мыслей, которая сама собой крутится в Вашей голове является вне вашей воле. Вы не сможете их устранить. Но они не помешают Вам прийти к блаженству. Нужно только лишь не заставлять себя думать над проблемой. Это сделать на столько же легко настолько же и сложно. Разум привык все обдумывать. При этом не заставлять себя думать не подразумевает сильные усилия. Вы не напрягаетесь, а просто не заставляете себя думать.

Asus

Математика / Православие / Христианство / Прочая старинная литература / Книги по психологии

Похожие книги