Читаем Занимательно о микроконтроллерах полностью

В синхронном динамическом ОЗУ (SDRAM) увеличение быстродействия получается за счет применения конвейерной обработки сигнала. Как известно, при использовании конвейера можно разделить операцию считывания или записи на отдельные подоперации, такие как выборка строк, выборка столбцов, считывание ячеек памяти, и производить эти операции одновременно. При этом пока на выход передается считанная ранее информация, производится дешифрация столбца для текущей ячейки памяти и производится дешифрация строки для следующей ячейки памяти. Этот процесс иллюстрируется рис. 3.38, а.

Из приведенного рисунка видно, что, несмотря на увеличение времени доступа к ОЗУ при считывании одной ячейки памяти, при считывании нескольких соседних ячеек памяти общее быстродействие микросхем синхронного динамического ОЗУ возрастает. Для сравнения на рис. 3.38, б приведена структурная схема обычного динамического ОЗУ.

Рис. 3.38.Структурная схема конвейерной обработки данных

Время задержки распространения сигнала tз в этой схеме равно периоду тактового сигнала в шине обращения к ОЗУ и определяется по формуле:

tз = tCT + tDC+ tЗМ,

где tCT — это время срабатывания счетчика адреса динамического ОЗУ; tDC — это время распространения сигнала дешифратора адреса; tЗМ — это время появления сигнала на выходе запоминающей матрицы.

Время задержки распространения сигнала в схеме синхронного динамического ОЗУ можно определить по формуле:

tз = tCT + tDC tRG + tЗМ tRG,

где tRG — это записи в параллельный регистр.

Таким образом, время доступа к синхронному динамическому ОЗУ больше, чем к обычному динамическому ОЗУ. Однако период тактового сигнала можно значительно уменьшить, т. к. он будет определяться максимальным из времен:

Поэтому, несмотря на то, что при обращении к одиночной ячейке памяти время доступа к SDRAM возрастает, при пакетном считывании последовательно расположенных байт общее время считывания оказывается значительно меньшим, т. к. все последующие данные на выходе ОЗУ будут появляться с периодом tобр. Выигрыш при пакетной работе SDRAM может быть достаточно большим, т. к. при обращении к этому типу памяти допустимо устанавливать размер пакета данных равным 256 слов.

На этом закончим рассмотрение различных видов памяти микропроцессорных устройств. Полученных знаний вполне достаточно для продолжения изложения материала. Если же кому-либо захочется более подробно ознакомиться с устройствами запоминания информации, можно обратиться к специализированной литературе [1, 3, 5–7].

Итак, подведем итоги

В данной главе были рассмотрены различные устройства хранения данных. Используя сумматоры, рассмотренные в предыдущей главе и запоминающие устройства, рассмотренные в этой главе, уже можно построить устройство обработки данных, входящее в состав любого микропроцессора.

А теперь научимся работать с двоичными числами: суммировать их, вычитать, работать со знаком и с дробными числами. Кроме того, пора бы научиться работать и с обычными текстами!

<p>Глава 4</p><p>Принципы работы микропроцессора</p>

Теперь рассмотрены принципы работы основных узлов микропроцессорной системы, и можно перейти к изучению операционного блока микропроцессора. Он предназначен для выполнения команд, т. е. реализует операции обработки данных. Однако прежде чем рассмотреть этот блок, давайте научимся представлять данные в двоичном виде и немного поучимся считать. Обратите внимание, что все примеры будут приведены в двоичном виде. Именно в такой форме выполняет обработку данных цифровая аппаратура. Здесь не будет использоваться шестнадцатеричная или восьмеричная форма записи двоичного кода. Эти формы записи двоичного числа удобны своею краткостью. Но для лучшего понимания принципов обработки данных удобней использовать двоичную запись.

Виды двоичных кодов

В микропроцессорах двоичные коды используются для представления любых обрабатываемых данных: чисел, текста, команд и т. д. При этом разрядность двоичных кодов может превышать разрядность внутренних регистров самого процессора и ячеек используемой памяти. В таком случае длинный код может занимать несколько ячеек памяти и обрабатываться несколькими командами процессора. Подчеркнем, что все ячейки памяти, выделенные под многобайтное число, рассматриваются как одно число.

Для представления числовых данных могут использоваться знаковые и беззнаковые коды. Для определенности примем разрядность процессора равной 8 битам, и в последующих примерах будем рассматривать именно такие числа.

Беззнаковые двоичные коды

Первый вид двоичных кодов, который мы рассмотрим, используется для представления целых беззнаковых чисел. В нем каждый двоичный разряд представляет собой степень цифры 2. Формат 8-разрядного беззнакового двоичного кода приведен на рис. 4.1.

Рис. 4.1. Формат 8-разрядного беззнакового двоичного кода

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника