Читаем What a Fish Knows полностью

Ранние натуралисты приписывали такое поведение телепатии, но анализ замедленной съемки позволяет найти нехитрое объяснение: мизерные задержки в распространении движения по школе показывают, что рыбы реагируют на движения друг друга. Их сенсорные системы работают на столь тонкой временной шкале, что создается впечатление, будто все они меняют направление движения как один.

В дневное время острое зрение помогает рыбам-школьникам двигаться в унисон, как это делают птицы. Но в отличие от птиц (или людей, которые осмелятся попробовать), они продолжают двигаться как единое целое даже в темноте. Как? Благодаря ряду специализированных чешуек, проходящих горизонтально вдоль их боков и образующих так называемую боковую линию. Боковая линия обычно видна как тонкая темная линия, потому что на каждой чешуйке есть углубление, которое отбрасывает тень. Впадина населена нейромастами - скоплениями сенсорных клеток, каждая из которых имеет волосовидный выступ, заключенный в крошечную чашечку геля. Изменения давления и турбулентности воды, в том числе волны от собственного движения рыбы, отраженные от окружающей среды, вызывают отклонения волосков нейромастов, которые запускают нервные импульсы в мозг рыбы. Таким образом, боковая линия действует как сонарная система и особенно полезна ночью и в мутной воде.

Благодаря боковой линии рыбы, плавающие рядом, практически находятся в физическом контакте, а передача сигналов между ними сопоставима с передачей визуальной информации, что дает начало гидродинамической визуализации. Именно гидродинамическая визуализация позволяет слепым пещерным рыбам обнаруживать неподвижные объекты, такие как камни и кораллы, за счет искажения обычно симметричного потока поля, который окружает рыбу в открытой воде. Слепые пещерные рыбы могут составлять ментальные карты - навык, очень полезный для навигации существ, лишенных средств визуальной ориентации.

Известно, что латерализация функций мозга широко распространена у рыб, и эти умные рыбки также используют свои боковые линии несимметрично, когда сталкиваются с незнакомыми объектами. Когда в аквариум поместили пластиковый ориентир вдоль середины одной из стен, слепые пещерные рыбки предпочли проплыть мимо него, используя боковую линию с правой стороны. Это предпочтение исчезло через несколько часов, так как рыбы стали привыкать к новому ориентиру, а значит, и чувствовать себя комфортно. Поскольку зрительная и сенсорная системы боковой линии у рыб работают независимо друг от друга, этот вывод позволяет предположить, что латерализация мозга - явление глубоко укоренившееся. Зрячие рыбы уже были известны своей склонностью к смещению правого глаза в эмоциональных контекстах, например, при изучении нового (и, следовательно, пугающего) объекта.

Как и большинство биологических конструкций, боковая линия связана с неизбежными компромиссами. Поток воды, возникающий при плавании, активирует нейромасты, и этот "фоновый шум" гасит реакцию рыбы на внешние движения. Эксперименты показывают, что плавающие рыбы реагируют на движение хищника, находящегося поблизости, лишь наполовину быстрее, чем неподвижные. С другой стороны, рыба может обнаружить искажения в носовой волне, образующейся перед ее собственным носом при плавании вперед, и таким образом избежать столкновения с объектами, невидимыми из-за темноты или прозрачности, например, со стенкой аквариума. К сожалению для рыб, эта система кажется непригодной для обнаружения присутствия рыболовной сети.

Электрифицированный

Чувство, позволяющее вам не натыкаться на стену в темноте, полезно, но представьте, что вы можете определить присутствие чего-то по ту сторону стены, когда вы ничего не видите и не слышите. Войдите в мир электрорецепции.

Электрорецепция - это биологическая способность воспринимать естественные электрические стимулы. Она присуща исключительно рыбам, исключение составляют лишь однопроходные (утконосы и ехидны), тараканы и пчелы. Электрическая чувствительность широко распространена у акул, коньков и скатов. Среди телеостов (30 000 с лишним видов костистых рыб) более трехсот видов получают заряд от жизни, и он должен иметь высокую ценность как инструмент выживания, поскольку он эволюционировал независимо, по крайней мере, восемь раз у рыб. Его преобладание в водной среде обитания связано с сильными электропроводящими свойствами воды по сравнению с воздухом.

Перейти на страницу:

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука