Почему заключение в каждом из двух примеров смешанного условного силлогизма считается обоснованно выведенным из посылок? На данном этапе читатель уже достаточно подготовлен, чтобы ответить на этот вопрос. Правильным ответом является следующий: если мы утверждаем истинность условного суждения, а также истинность его основания, то мы с необходимостью должны утверждать и истинность следствия.
То же самое можно выразить и иначе. Конъюнктивное суждение «если объявлена война, то цены поднимаются, и война объявлена» имплицирует суждение «цены поднимаются». Конъюнктивное суждение является главным, или подчиняющим, относительно суждения «цены поднимаются». Таким образом, если мы утверждаем истинность конъюнкции, то мы должны также утверждать и истинность подчиненного суждения.
Ценность такого рассуждения вполне очевидна. Зачастую нам легче установить истинность условного суждения, а также истинность его антецедента, чем истинность его консеквента. Истинность консеквента тогда может быть установлена опосредованно, как истинность заключения в таком умозаключении. Таким образом, все попытки поделить любой угол (осуществить трисекцию) на три части с помощью циркуля и линейки сегодня должны рассматриваться как бесполезные, поскольку известна истинность двух суждений: «если геометрическое построение можно выразить в виде несокращаемого алгебраического уравнения выше второй степени, то его нельзя построить только с помощью циркуля и линейки» и «трисекция угла выражается несокращаемым кубическим уравнением». Следовательно, трисекция угла посредством элементарных методов невозможна. Данный результат мог быть получен только как заключение смешанного условного силлогизма.
Данный аргумент имеет следующую схематическую форму: Если
Предположим, нам известно, что суждение «если имеет место полное затмение Солнца, то на улицах становится темно» является истинным. Можем ли мы в этом случае для суждения «имеет место полное затмение Солнца» предложить в качестве окончательного основания суждение «на улицах стало темно»? Если бы мы так сделали, то получившееся в результате умозаключение было бы ошибочным. В условном суждении утверждается только то, что если антецедент истинен, то консеквент должен быть истинным; в нем не утверждается того, что консеквент может быть истинен только в том случае, если истинен антецедент. Так, наряду с моментами полного затмения на улицах также бывает темно по ночам или в облачные дни. Следовательно, будет ошибкой утверждать истинность консеквента и выводить из нее истинность антецедента. Ниже мы еще не раз привлечем внимание читателя к этой ошибке. Ее иногда совершают видные ученые, не проводящие различия между необходимым и вероятностным выводом или не учитывающие отличия между доказательством истинности суждения и ее верификацией. Примером тому является следующее утверждение: если теория органической эволюции истинна, то мы должны найти окаменелые останки вымерших видов животных. Однако обнаружение подобных останков не является доказательством истинности данной теории или ее окончательным основанием.
Утверждать истинность консеквента условного суждения, таким образом, ошибочно. Однако отрицание истинности консеквента может дать нам обоснованное заключение. К примеру, мы хотели бы знать, виновен ли Том Муни в закладывании взрывного устройства во время празднования парада по случаю Дня готовности (Preparedness day) в 1916 году в Сан-Франциско. Изучив природу этого устройства, мы можем сформулировать следующее суждение: «если Муни виновен, то он находился на углу улицы за десять минут до взрыва». Однако предположим, что у Муни есть алиби, и он может доказать, что за пятнадцать минут до взрыва находился в миле от места взрыва на улице, которая при этом была непроходимой. В таком случае нам придется отрицать консеквент условного суждения, а это отрицание, в свою очередь, обязывает если не политиков, то, по крайней мере, всех, кто изучает логику, отрицать и антецедент. Это происходит потому, что в условном суждении утверждается неверность того, что антецедент может быть истинным, а консеквент одновременно с этим ложным.