Читаем Введение в логику и научный метод полностью

Теперь мы видим, что целое доказательство может быть разложено на несколько разных шагов. Следовательно, доказательство является окончательным, если окончательным является каждый отдельный шаг. Таким образом, мы обнаруживаем, что суждение не может быть доказано, если мы допускаем только постулат. Нам также требуются четыре других допущения относительно суммируемой природы весов, объемов и сил, а также относительно постоянства плотности жидкости. Архимед не сформулировал данные допущения в явном виде, и поэтому предложенное им доказательство не является окончательным. Однако данные допущения имеют столь общую природу, что принимаются как данность практически в любом физическом исследовании. Тем не менее, крайне важно выражать их в явной форме, поскольку без них или их эквивалентов мы не сможем доказать гидростатический принцип Архимеда. Более того, в некоторых областях современной физики были обнаружены основания для сомнения в универсальной истинности некоторых из этих допущений. Подробное перечисление всех посылок или допущений играет крайне важную роль в развитии наук. 3. На данном этапе мы готовы ответить на третий вопрос: от каких факторов или аспектов предметной области зависит окончательный характер доказательства? Мы видели, что доказательство является окончательным, если в нем каждый отдельный шаг является окончательным. Но почему окончательным является каждый шаг? Ответ на этот вопрос мы уже обсудили во вводной главе. Каждый шаг является окончательным потому, что если посылки в этом шаге истинны, то заключение также должно быть истинным, т. е. отношения между посылками и заключением таковы, что невозможно отыскать универсум, в котором посылки данной формы будут истинными, а заключение – ложным.

<p>§ 2. Некоторые ошибочные доказательства</p>

Мы сможем более ясно осознать потребность в осторожном анализе умозаключений, если рассмотрим еще два примера исторически известных умозаключений.

1. Первый пример представляет попытку развить идеи Евклида. Свой великий труд «Начала» Евклид начал с двадцати трех определений, пяти аксиом (являвшихся недоказанными допущениями, общими для всех наук) и пяти постулатов (которые были недоказанными суждениями, относящимися только к геометрии). Пятый постулат (Книга I) является суждением о параллельных прямых, но Евклид не считал нужным его использовать до тех пор, пока не дошел до двадцать пятого суждения в своей книге. Если все другие аксиомы и постулаты Евклида представлялись его последователям самоочевидными, то пятый постулат, казалось, требовал доказательства. Прокл, математик V века, писал: «…тот факт, что когда уменьшаются прямые углы, прямые начинают сходиться, является истинным и необходимым; однако утверждение о том, что, поскольку они сходятся все больше по мере своего продолжения, они на определенном этапе пересекутся, является возможным, но не необходимым, если не будет предоставлен аргумент, показывающий истинность данного утверждения в случае прямых» [121] . На протяжении многих веков считалось, что введение пятого постулата без доказательства было серьезным недостатком «Начал», и осуществлялись множественные попытки его доказать.

Мы рассмотрим доказательство, предложенное Птолемеем и изложенное Проклом. Однако сначала нам нужно будет привести релевантные определения и постулаты Евклида. Согласно Евклиду (определение 23), параллельные прямые являются «прямыми линиями, которые находятся на одной плоскости и, будучи продолженными неограниченно в обе стороны, не пересекаются ни в одной стороне». Пятью постулатами являются следующие:

Постулат 1. От всякой точки до всякой точки можно провести прямую.

Постулат 2. Ограниченную прямую можно непрерывно продолжать по прямой.

Постулат 3. Из всякого центра всяким раствором может быть описан круг.

Постулат 4. Все прямые углы равны между собой.

Постулат 5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Евклид ввел этот последний постулат для того, чтобы доказать суждение (теорему) 29: «Прямая, пересекающая две параллельные прямые, делает противоположные углы равными друг другу, а внешний угол равным внутреннему углу и противолежащему углу, а внутренние углы на одной и той же стороне равными двум прямым». Чтобы доказать постулат о параллельных прямых, Птолемей сначала доказал теорему 29 без помощи этого постулата, а затем показал, что постулат является следствием этой теоремы. Воспроизведем предложенное им доказательство теоремы:

Прямая линия, пересекающая две параллельные прямые, должна делать сумму внутренних углов на одной и той же стороне равной, большей или меньшей двум прямым углам.

Пусть АВ, CD – параллельные прямые, и пусть FG – секущая прямая. Я говорю, 1) что FG не делает внутренние углы на одной и той же стороне больше, чем два прямых.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука