1. В каком смысле данное «доказательство» доказывает суждение, если допустить, что оно является окончательным?
2. Является ли доказательство окончательным?
3. От каких факторов или аспектов предметной области зависит окончательный характер доказательства?
Данные вопросы должны быть рассмотрены непосредственным образом, если мы хотим избежать путаницы в отношении философии доказательства.
1. Если доказательство является обоснованным, то тогда для всех возможных твердых тел и для всех жидкостей, выполняющих условия, сформулированные в постулате, отношения, описанные в суждении, должны иметь место. В отношении суждений невозможны никакие исключения, и при этом не требуется никакого эмпирического исследования жидкостей для того, чтобы мы могли быть в этом уверены. Данное суждение можно утверждать без опасения столкнуться с противоречием в каком-либо будущем эксперименте, если допускается постулат. Однако это квалификационное «если» является крайне важным. Оно напоминает о том, что мы не доказали материальную истинность данного суждения. Мы не показали, что в любом действительном объеме воды более плотное твердое тело будет тонуть; это будет так, только если вода на самом деле является жидкостью, относительно которой выполняется указанный постулат. Таким образом, мы показали, что если вода является жидкостью, природа которой частично выражена данным постулатом, то дальнейшие отношения, сформулированные в суждении, с необходимостью будут ей присущи. Однако данное доказательство не показывает и не претендует на то, чтобы показывать, что вода на самом деле является жидкостью.
Быть может, Архимед полагал, что применимость данного постулата для всех жидкостей очевидна. Если так, то он, без сомнения, ошибался. Как мы уже отмечали, и как у нас еще не раз будет возможность убедиться, кажущаяся самоочевидность суждения не представляет окончательного основания его истинности. Однако независимо от того, считал он так или нет, истинность или ложность постулата в самом доказательстве не играет никакой роли. Повторим, что приведенное выше доказательство не доказывает материальной истинности суждения. Вопрос о том, какой тип оснований требуется для материальной истинности суждения, рассмотрен в главах VIII, XI, XIII и XIV. Здесь же нам нужно лишь подчеркнуть, что единственное, что окончательное доказательство может доказывать, это лишь существование необходимой связи между определяющими свойствами жидкостей и твердых тел и прочими их свойствами. Доказательство проявляет отношения импликации между суждениями, и ничего более. В доказательстве не дается ответа на вопрос о том, обладает ли какая-либо реальная жидкость свойствами, сформулированными в постулате.
Читатель может также отметить, что объем жидкости и размер погруженного в нее твердого тела не играет никакой роли в доказательстве, поскольку данное суждение следует из допущения относительно жидкостей как таковых, а не из допущений относительно жидкостей и твердых тел определенного объема. Таким образом, суждение может быть доказано, если посылки его имплицируют или, иными словами, если данное суждение является необходимым следствием посылок.
2. Пора переходить к рассмотрению второго вопроса: является ли данное доказательство окончательным? Прежде чем читатель определится с ответом, напомним ему, что доказательство является окончательным, только если суждение является необходимым следствием посылок. Доказательство не является окончательным, если помимо явно сформулированных посылок требуются еще и какие-либо другие посылки. Но как в таком случае мы можем быть уверены в том, что никакие посылки, помимо сформулированных, не требуются для того, чтобы имплицировать суждение? Есть только один способ это узнать. Мы должны разбить приведенное выше доказательство на ряд импликаций, каждая из которых не будет требовать никаких посылок, кроме тех, что сформулированы в явной форме. Проанализируем данное доказательство более детально.
Первая часть доказательства может быть сформулирована следующим образом:
Вторая часть доказательства может быть выражена следующим образом. Для удобства мы обозначим буквами каждый отдельный шаг.