В марте 2020 года Институт Аллена совместно с консорциумом других организаций, включая Microsoft, Национальную медицинскую библиотеку США, Управление научно-технической политики Белого дома, подразделение AWS компании Amazon, приступил к созданию COVID-19 Open Research Dataset — базы данных с возможностью поиска по научным статьям, связанным с пандемией коронавируса[118]. Она позволяет ученым и медицинским учреждениям быстро находить ответы на конкретные вопросы из самых разных областей научных исследований, включая биохимию вируса, эпидемиологические модели и лечение заболевания. По состоянию на апрель 2021 года база данных включала более 280 000 научных статей и активно использовалась учеными и врачами[119].
Подобные инициативы имеют колоссальный потенциал превращения в инструменты ускорения генерирования новых идей. Однако эта технология пока находится в зачаточном состоянии, и для реального прогресса придется преодолеть еще не одно препятствие и создать более универсальный машинный интеллект — в эту тему мы углубимся в главе 5. Легко представить по-настоящему эффективную систему в роли интеллектуального ассистента ученых в исследованиях, способного поддерживать полноценный диалог, играть с идеями и активно подсказывать новые направления научных изысканий.
В то же время я считаю важным сохранять взвешенный и реалистичный взгляд на наши потенциальные возможности. Ничто из вышесказанного не означает, что искусственный интеллект гарантирует бурное появление инноваций или стабильное достижение результатов за все более короткое время. В конце концов, суть науки — экспериментирование, а на постановку эксперимента и оценку его результатов требуется время. В некоторых случаях применение научного метода действительно можно ускорить, например благодаря использованию лабораторных роботов или даже быстрому проведению некоторых экспериментов в компьютерной модели.
Однако в таких областях, как медицина и биология, многие эксперименты должны ставиться на живых организмах, и в этом отношении возможность резкого ускорения процесса весьма ограниченна. Поиск вакцин от COVID-19 ярко высветил этот факт. Ученые смогли разработать формулы вероятных вакцин за считаные недели после получения генетического кода вируса. Долгое ожидание пригодных для использования вакцин почти полностью объяснялось необходимостью их масштабных испытаний как на животных, так и на людях, а также наращивания мощностей для производства в необходимых масштабах. Даже если бы у нас имелся по-настоящему совершенный, как в научной фантастике, искусственный интеллект, это не гарантировало бы существенного ускорения появления вакцины. В этом и заключается одна из причин моего скептического отношения к заявлениям Курцвейла о том, что искусственный интеллект скоро приведет к радикальному увеличению продолжительности жизни человека. Даже если ИИ действительно поможет выдвинуть плодотворные новые идеи в этой области, как мы протестируем созданные на их основе решения на безопасность и эффективность, не дожидаясь однозначных результатов долгие годы или даже десятилетия? Безусловно, есть немало возможностей реформировать систему регулирования и упростить одобрение новых лекарств и методов лечения, но в конечном счете даже самым умным и изобретательным ученым приходится ждать получения результатов экспериментов, подтверждающих верность их идей.
В этой главе я хотел дать краткий обзор самых интересных и значимых применений искусственного интеллекта, а также обозначить те области, в которых ИИ может оказаться прорывной технологией в ближайшем будущем, и те, где нам придется ждать этого дольше. Предложенный список никоим образом не является исчерпывающим. Постепенно искусственный интеллект затронет и преобразует практически все.
Утверждение, что искусственный интеллект быстро превращается в ресурс, подобный электричеству, подчеркивает масштабность и революционность этой технологии. Однако по сравнению с электричеством ИИ намного сложнее и динамичнее, он будет непрерывно совершенствоваться, открывая практически бесконечное число постоянно меняющихся возможностей. Чтобы понять подлинный потенциал этого нового ресурса, нужно углубиться в научные основы и в историю создания искусственного интеллекта и узнать, как развивается эта область и какие трудности ее ожидают, а также познакомиться с конкурирующими идеями, которые формируют технологию по мере ее развития. Это и будут темы двух следующих глав.
Глава 4
В поисках путей создания интеллектуальных машин
Премию Тьюринга называют нобелевской в области информационных технологий. Она носит имя легендарного математика и ученого Алана Тьюринга и ежегодно присуждается Ассоциацией по вычислительной технике людям, посвятившим себя развитию этой области. Как и в случае Нобелевской премии, присуждение премии Тьюринга сопровождается выплатой $1 млн, выделяемого, главным образом, Google.