Еще более смелый подход заключается во встраивании программного обеспечения на базе ИИ, предназначенного для открытия химических веществ, в роботов, способных проводить эксперименты в реальной лаборатории. В этом направлении движется, например, небольшая компания Kebotix из Кембриджа в штате Массачусетс, стартап, отпочковавшийся от ведущей гарвардской лаборатории материаловедения и создавший, по словам его участников, «первую в мире самоуправляемую лабораторию для открытия новых материалов». Роботы этой компании могут ставить эксперименты самостоятельно, пользуясь лабораторным оснащением, скажем пипетками для переноса и смешивания жидкостей, и управляя установками для проведения химического анализа. Затем результаты экспериментов анализируются алгоритмами искусственного интеллекта, которые выбирают лучшее направление действий и инициируют дальнейшие эксперименты. В результате возникает повторяющийся самосовершенствующийся процесс, по утверждению представителей компании, резко ускоряющий выявление полезных новых молекул[109].
Многие наиболее многообещающие и хорошо финансируемые возможности на стыке химии и искусственного интеллекта связаны с разработкой новых лекарств. По одному отчету, на апрель 2020 года насчитывалось не менее 230 стартапов, использовавших ИИ для поиска новых лекарственных средств[110]. Дафна Коллер, профессор Стэнфорда и сооснователь онлайновой образовательной платформы Coursera, — один из ведущих мировых экспертов по применению машинного обучения в биологии и биохимии. Коллер также является основателем и гендиректором insitro, стартапа из Кремниевой долины, основанного в 2018 году и привлекшего более $100 млн на поиск новых лекарств с помощью машинного обучения. Повсеместное замедление технологических инноваций, поразившее американскую экономику в целом, особенно очевидно в фармакологии. Коллер сказала мне следующее:
Проблема в том, что создание новых лекарств постоянно усложняется: уровень успешности клинических испытаний находится ближе к середине 10 %-ного диапазона; затраты на исследования до уплаты налогов при разработке нового лекарственного средства (с учетом неудачных попыток) превышают $2,5 [млрд]. Рентабельность инвестиций в создание лекарств линейно уменьшается с каждым годом и, по некоторым оценкам, станет нулевой еще до 2020 года. Одна из причин заключается в том, что разработка лекарств принципиально усложнилась: многие (если не все) «низко висящие плоды» — иными словами, лекарства, значимые для больших популяций, — уже сорваны. Поэтому на следующем этапе разработки лекарств нам придется сосредоточиться на более специализированных препаратах, действенность которых может зависеть от конкретных условий и которые предназначаются лишь определенной подгруппе пациентов[111].
insitro и его конкуренты рассчитывают с помощью искусственного интеллекта быстро выявлять перспективные рецептуры, которые могут стать новыми лекарствами, и таким образом сильно снизить затраты на разработку. По словам Коллер, открытие лекарственного средства — это «долгий путь, на котором вас ждет множество развилок» и «99 % дорог ведут в тупик». Если искусственный интеллект будет «более-менее верным компасом, это невероятно повысит шансы на успешное завершение процесса»[112].