Было бы очень хорошо, если бы проблема Юма была всего лишь философским ребусом, который можно и проигнорировать. Но проигнорировать проблему Юма не получится. Например, бизнес Google основан на угадывании, какие страницы вы ищете, когда вписываете в строку поиска определенные слова. Ключевое преимущество этого поисковика — огромный массив запросов, которые люди вводили в прошлом, и ссылок, на которые они кликали на соответствующих страницах результатов. Но что делать, если кто-то вписывает сочетание ключевых слов, которого нет в архивах? А даже если они и есть, разве можно с уверенностью сказать, что текущий пользователь хочет найти те же страницы, что и все его предшественники?
Как насчет того, чтобы
Но, может быть, все не так страшно? Разве с достаточным количеством данных большинство случаев не попадает в категорию «тривиальных»? Нет, не попадает. В предыдущей главе мы уже разобрались, почему запоминание не может быть универсальным обучающимся алгоритмом, но теперь давайте посмотрим на это с количественной точки зрения. Предположим, у вас есть база данных с триллионом записей по тысяче булевых полей в каждой (булево поле — это ответ на вопрос «да или нет»). Это довольно много. Какую долю возможных случаев вы увидели? (Попробуйте угадать, прежде чем читать дальше.) Итак, число возможных ответов — два на каждый вопрос, поэтому для двух вопросов это дважды два (да-да, да-нет, нет-да и нет-нет), для трех вопросов — это два в кубе (2 × 2 × 2 = 23), а для тысячи вопросов — это два в тысячной степени (21000). Триллион записей в нашей базе данных — это ничтожно малая доля процента от 21000, а именно «ноль, запятая, 286 нулей, единица». Итого: неважно, сколько у вас будет данных — тера-, пета-, экса-, зетта- или иоттабайты. Вы
Если все это звучит немного абстрактно, представьте, что вы крупный провайдер электронной почты и вам надо пометить каждое входящее письмо как спам или не спам. Даже если у вас есть база данных с триллионом уже помеченных писем, она вас не спасет, потому что шанс, что очередное письмо будет точной копией какого-то из предыдущих, практически равен нулю. У вас нет выбора: надо попытаться более обобщенно определить, чем спам отличается от не-спама. И, согласно Юму, сделать это никак нельзя.
Теорема «Бесплатных обедов не бывает»
Через 250 лет после того, как Юм подбросил нам свою гранату, ей придал элегантную математическую форму Дэвид Уолперт, физик, ставший специалистом по машинному обучению. Его результаты, известные как уже упомянутая выше теорема «Бесплатных обедов не бывает», ставят ограничения на то, как хорош может быть обучающийся алгоритм. Ограничения довольно серьезные: никакой обучающийся алгоритм не может быть лучше случайного угадывания! Вот и приехали: Верховный алгоритм, оказывается, — это просто подбрасывание монетки. Но если серьезно, как может быть, что никакой обучающийся алгоритм не в состоянии победить угадывание с помощью орла или решки? И почему тогда мир полон очень успешных алгоритмов, от спам-фильтров до самоуправляющихся машин (они вот-вот появятся)?
Теорема «Бесплатных обедов не бывает» очень сильно напоминает причину, по которой в свое время Паскаль проиграл бы пари. В своей книге «Мысли», опубликованной в 1669 году, он заявил, что нам надо верить в христианского Бога, потому что, если он существует, это дарует нам вечную жизнь, а если нет — мы мало что теряем. Это был замечательно утонченный аргумент для того времени, но, как заметил на это Дидро, имам может привести точно такой же довод в пользу веры в Аллаха, а если выбрать неправильного бога, придется расплачиваться вечными муками в аду. В целом, учитывая огромное количество мыслимых богов, вы ничего не выиграете, выбрав в качестве объекта своей веры одного из них в пользу любого другого, потому что на любого бога, который говорит «делай то-то», найдется еще один, который потребует нечто противоположное. С тем же успехом можно просто забыть о богах и наслаждаться жизнью без религиозных предрассудков.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии