Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Вопрос Юма — отправная точка нашего путешествия. Начнем с того, что проиллюстрируем его примером из повседневной жизни и встретим ее современное воплощение в знаменитой теореме No free lunch — «Бесплатных обедов не бывает»[43]. Затем мы посмотрим, что отвечают Юму символисты. Это подведет нас к самой важной проблеме машинного обучения: проблеме переобучения, то есть выделения фантомных закономерностей, которых на самом деле нет. Мы посмотрим, как ее решают символисты и почему машинное обучение — сердце своего рода алхимии, философский камень превращения данных в знания. Для символистов этот камень — само знание. В следующих четырех главах мы увидим решения алхимиков из других «племен». 

<p>Быть или не быть свиданию?</p>

У вас есть знакомая девушка, которая вам очень нравится. Вы хотите пригласить ее на свидание, однако вам уже приходилось сталкиваться с отказами, и вы решили задать вопрос, только если будете твердо уверены, что она скажет «да». Пятничным вечером вы сидите с мобильником в руке и пытаетесь решить, звонить или не звонить. Вы помните, что в прошлый раз она не согласилась. Но почему? До этого она два раза сказала «да», потом «нет». Может быть, есть какие-то дни, когда она не хочет никуда ходить? Или, может быть, она любит клубы, а рестораны, напротив, ей не нравятся? Вы человек, необычайно любящий систему, поэтому откладываете телефон в сторону и набрасываете на листке бумаги все, что помните по прошлым встречам. 

Итак, что вас ждет? Быть свиданию или не быть? Есть ли какая-то закономерность во всех этих «да» и «нет»? И самое главное — что эта схема скажет о сегодняшнем дне?

Понятно, что одного фактора для прогнозирования мало. В какие-то выходные она хотела куда-нибудь сходить, а в другие — нет. Иногда ей хотелось развлечься в клубе, а иногда не хотелось и так далее. А как насчет сочетания факторов? Может быть, она любит по выходным ходить в клуб? Нет, не то: случай номер четыре перечеркивает эту догадку. А может быть, она любит гулять только в теплые вечера? В точку! Сработало! В таком случае, учитывая, что на улице морозец, сегодня вечером шансов маловато. Погодите! А что если она любит ходить в клуб, когда по телевизору нет ничего интересного? Это тоже обоснованное предположение, и в таком случае сегодня вас ждет «да»! Быстрее, надо позвонить ей, пока не очень поздно. Стоп. Как узнать, что эта закономерность правильная? Целых два варианта согласуются с вашим прошлым опытом, но они дают противоположные прогнозы. Подумаем еще раз: а если она ходит в клуб только в хорошую погоду? Или она выходит из дома по выходным, когда по телевизору нечего смотреть? Или…

Тут вы в отчаянии комкаете листок бумаги и швыряете его в мусорную корзину. Ничего не получается! Как быть?! Дух Юма печально кивает у вас за плечом. У вас нет никаких оснований предпочесть одно обобщение другому. «Да» и «нет» — одинаково допустимые ответы на вопрос «Что она скажет?». А часы тикают. С горечью вы вытаскиваете из кармана пятак и почти готовы его подбросить.

Вы не одиноки в своем затруднении — оно знакомо и нам. Мы буквально только что отправились в путь навстречу Верховному алгоритму и, похоже, уже наткнулись на непреодолимое препятствие. Есть хоть какой-нибудь способ научиться чему-то на прошлом опыте, чтобы с уверенностью применять знание в будущем? А если такого способа нет, не станет ли машинное обучение безнадежным предприятием? Если уж на то пошло, не построена ли вся наука или даже все человеческое знание на довольно шаткой почве?

Непохоже, чтобы проблему решало увеличение объема данных. Вы можете быть супер-Казановой и встречаться с миллионами женщин, по тысяче раз с каждой, но ваш обширный архив все равно не ответит на вопрос, что эта женщина ответит в этот раз. Даже если сегодняшний случай в точности напоминает тот, когда она сказала «да» — тот же день недели, тот же вид свидания, та же погода и те же шоу по телевизору, — это все еще не означает, что она согласится. Вполне может быть, что ее ответ определяется каким-то фактором, о котором вы не подумали или который не можете оценить. Или, может быть, в ее ответах нет ни ладу, ни складу: они случайные, и вы просто ставите себе палки в колеса, пытаясь отыскать в них какую-то схему.

Философы спорили о проблеме индукции Юма с тех самых пор, как он ее сформулировал, но так и не пришли к удовлетворительному ответу. Бертран Рассел[44] любил иллюстрировать эту проблему историей об индюке-индуктивисте. В первое утро индюку дали корм в девять утра. Но он был хорошим индуктивистом и не спешил с выводами. Он много дней собирал наблюдения при всевозможных обстоятельствах, однако его раз за разом кормили в девять утра. Наконец он сделал вывод: да, его всегда будут кормить в девять утра. А потом наступил канун Рождества и ему перерезали горло.

Перейти на страницу:

Похожие книги