Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Алгоритм, к которому мы придем, пока не будет Верховным (мы увидим почему), но так далеко еще никто не заходил. А в пути нас ждет столько сокровищ, что позавидовал бы сам Крез[41]. Тем не менее эта книга — лишь первая часть саги о Верховном алгоритме. Героем второй части станете вы, дорогой читатель. Ваша миссия, если вы решитесь взять ее на себя, — пройти остаток пути и вернуться с наградой. Я буду вашим скромным проводником по первой части, отсюда и до границы известного мира. Что? Вы говорите, что знаете слишком мало и не сильны в алгоритмах? Не пугайтесь. Информатика еще молода, и здесь, в отличие от физики или биологии, вам не надо быть доктором наук, чтобы совершить в ней революцию. (Не верите — спросите Билла Гейтса, а еще Сергея Брина, Ларри Пейджа и Марка Цукерберга[42].) Важны идеи и упорство.

Итак, вы готовы? Наш путь начнется с визита к символистам, «племени» с самой солидной родословной.

<p>ГЛАВА 3</p><p>ПРОБЛЕМА ИНДУКЦИИ ЮМА</p>

Вы рационалист или эмпирик?

Рационалисты считают, что чувства обманчивы и единственный верный путь к знанию — логическое рассуждение. Эмпирики уверены, что рассуждения подвержены ошибкам и знание должно быть получено из наблюдений и экспериментов. Французы — рационалисты. Англосаксы (как их называют французы) — эмпирики. Мыслители, юристы и математики — рационалисты. Журналисты, врачи и ученые — эмпирики. «Она написала убийство» — рационалистический криминальный телесериал. «C.S.I.: Место преступления» — эмпирический. В мире информатики теоретики и инженеры знаний — рационалисты. Хакеры и специалисты по машинному обучению — эмпирики.

Рационалисты любят планировать все заранее, еще до того, как сделают первый шаг. Эмпирики предпочитают пробовать и смотреть, что получится. Не знаю, существует ли ген рационализма или эмпиризма, но, глядя на моих коллег-информатиков, я пришел к выводу, что это почти черты характера: некоторые рационалистичны до мозга костей и не могут быть другими, а другие — насквозь эмпирики и всегда такими были. Представители обоих полюсов могут разговаривать друг с другом и иногда пользоваться полученными другим лагерем результатами, но понимают друг друга лишь отчасти. В глубине души каждый из них верит, что то, чем занимается оппонент, — вторично и не очень интересно.

Рационалисты и эмпирики, наверное, существовали с самого зарождения Homo sapiens. Перед тем как выйти на охоту, Пещерный Бобби долго сидел у костра и размышлял, где его поджидает добыча. Тем временем Пещерная Алиса систематически прочесывала территорию. Поскольку оба вида дошли до наших дней, наверное, будет правильно сказать, что ни один подход не лучше другого. Вы можете подумать, что машинное обучение — это окончательный триумф эмпириков, но скоро мы увидим, что все не так однозначно.

«Рационализм или эмпиризм?» — любимый вопрос философов. Платон был ранним рационалистом, а Аристотель — ранним эмпириком. Но по-настоящему дебаты разгорелись в эпоху Просвещения, когда по каждую сторону встали по три великих мыслителя: Декарт, Спиноза и Лейбниц были ведущими рационалистами; Локк, Беркли и Юм — их соперниками-эмпириками. Доверяя своей силе рассуждения, рационалисты сочиняли теории Вселенной, которые, мягко говоря, не прошли проверку временем, но помимо этого они изобрели фундаментальные математические методики, например математический анализ и аналитическую геометрию. Эмпирики были гораздо практичнее, и их влияние прослеживается везде, начиная с научного метода и заканчивая Конституцией США.

Выдающимся эмпириком и величайшим англоязычным философом всех времен был Дэвид Юм. О его серьезнейшем влиянии говорили такие ученые, как Адам Смит и Чарльз Дарвин, а еще его можно назвать святым покровителем символистов. Юм родился в Шотландии в 1711 году и большую часть своей жизни провел в Эдинбурге, который в XVIII веке процветал и бурлил интеллектуальной жизнью. Юм был человеком добродушным, но при этом строгим скептиком и много времени посвящал разрушению мифов своего времени. Он довел начатые Локком рассуждения об эмпирике до логического завершения и задал вопрос, который с тех пор, как дамоклов меч, висит над любым знанием, от самого банального до самого сложного: как в принципе можно оправдать экстраполяцию того, что мы видели, на то, чего мы не видели? Каждый обучающийся алгоритм в каком-то смысле — попытка ответить на этот вопрос.

Перейти на страницу:

Похожие книги