Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

В когнитивистике давно не утихают дебаты между символистами и аналогизаторами. Символисты показывают вещи, которые умеют моделировать они, но не умеют аналогизаторы. Затем аналогизаторы решают задачу, указывают на слабые места символистов, и цикл повторяется. Обучение на основе примеров, как его иногда называют, предположительно лучше подходит для моделирования запоминания отдельных эпизодов нашей жизни, а правила, предположительно, лучше выбрать для рассуждений с абстрактными концепциями, например «работа» и «любовь». Когда я был студентом, меня осенило: это ведь просто указывает на существование континуума, и надо уметь учиться на всем его протяжении. Правила — это, по сути, обобщенные частные случаи, где мы «забыли» некоторые атрибуты, потому что они не имеют значения. Частные же случаи — очень конкретные правила с условием для каждого атрибута. В жизни аналогичные эпизоды постепенно абстрагируются и образуют основанные на правилах структуры, например «есть в ресторане». Вы знаете, что пойти в ресторан — это и заказать что-нибудь из меню, и дать чаевые, и следуете этим «правилам поведения» каждый раз, когда едите вне дома. При этом вы, вероятно, и не вспомните, в каком заведении впервые все это осознали.

В своей диссертации я разработал алгоритм, объединяющий обучение на основе частных случаев и на основе правил. Правило не просто подходит к сущностям, которые удовлетворяют всем его условиям: оно подходит к любой сущности, которая похожа на него больше, чем на любое другое правило, и в этом смысле приближается к удовлетворению его условий. Например, человек с уровнем холестерина 220 мг/дл ближе, чем человек с 200 мг/дл, подходит к правилу «Если холестерин выше 240 мг/дл, есть риск сердечного приступа». RISE, как я назвал этот алгоритм, в начале обучения относится к каждому обучающему примеру как к правилу, а затем постепенно обобщает эти правила, впитывая ближайшие примеры. В результате обычно получается сочетание очень общих правил, которые в совокупности подходят к большинству примеров, плюс большое количество конкретных правил, которые подходят к исключениям, и так далее по «длинному хвосту» конкретных воспоминаний. RISE в то время предсказывал успешнее, чем лучшие обучающие алгоритмы, основанные на правилах и частных случаях. Мои эксперименты показали, что его сильной стороной было именно сочетание плюсов обоих подходов. Правила можно подобрать аналогически, и поэтому они перестают быть хрупкими. Частные случаи могут выбирать разные свойства в разных областях пространства и тем самым борются с проклятием размерности намного лучше метода ближайшего соседа, который везде выбирает одни и те же свойства.

RISE был шагом в сторону Верховного алгоритма, потому что соединял в себе символическое и аналогическое обучение. Однако это был лишь маленький шажок, потому что он не обладал полной силой этих парадигм и в нем по-прежнему не хватало трех оставшихся. Правила RISE нельзя было по-разному сложить в цепочку: они просто предсказывали класс примера на основе его атрибутов. Правила не могли рассказать о более чем одной сущности одновременно. Например, RISE не умел выражать правила вроде «Если у A грипп и B контактировал с A, то у B тоже может быть грипп». В аналогической части RISE лишь обобщал простой алгоритм ближайшего соседа. Он не может учиться в разных областях, используя отображение структур или какую-то схожую стратегию. Заканчивая работу над диссертацией, я не знал, как сложить в один алгоритм всю мощь пяти парадигм, и на время отложил проблему. Но, применяя машинное обучение к таким проблемам, как реклама из уст в уста, интеграция данных, программирование на примерах и персонализация сайтов, я постоянно замечал, что все парадигмы по отдельности дают лишь часть решения. Должен быть способ лучше.

Итак, проходя через территории пяти «племен», мы собирали их открытия, вели разговоры о границах и задумывались, как сложить вместе кусочки мозаики. Сейчас мы знаем неизмеримо больше, чем в начале пути, но чего-то по-прежнему не хватает. В центре мозаики зияет дыра, и поэтому собрать ее трудно. Проблема в том, что все алгоритмы машинного обучения, которые мы до сих пор видели, нуждаются в учителе, который покажет им правильный ответ. Они не могут научиться отличать опухолевую клетку от здоровой, если кто-то не повесит ярлыки «опухоль» и «здоровая клетка». А люди могут учиться без учителя, и делают это с самого первого дня своей жизни. Мы подошли к вратам Мордора[98], и долгий путь будет напрасным, если не обойти это препятствие. Но вокруг бастионов и стражников есть тропинка, и награда близка. Следуйте за мной…

<p>ГЛАВА 8</p><p>ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ</p>
Перейти на страницу:

Похожие книги