В поисках применения своему алгоритму Вапник и его сотрудники вскоре вышли на распознавание написанных от руки цифр, в котором их коллеги-коннекционисты в Bell Labs были мировыми экспертами. Ко всеобщему удивлению, метод опорных векторов с ходу справился не хуже многослойного перцептрона, который тщательно, годами оттачивали для распознавания цифр. Это подготовило почву для долгой интенсивной конкуренции между методами. Метод опорных векторов можно рассматривать как обобщение перцептрона, использование специфической меры сходства (скалярного произведения векторов) даст гиперплоскостную границу между классами. Но у метода опорных векторов имеется большое преимущество по сравнению с многослойными перцептронами: у весов есть единичный оптимум, а не много локальных, и поэтому их намного легче надежно найти. Несмотря на это, опорные векторы не менее выразительны, чем многослойные перцептроны: опорные векторы фактически действуют как скрытый слой, а их взвешенное среднее — как выходной слой. Например, метод опорных векторов может легко представлять функцию исключающего ИЛИ, имея один опорный вектор для каждой из четырех возможных конфигураций. Но и коннекционисты не сдавались без боя. В 1995 году Ларри Джекел, глава отдела Bell Labs, в котором работал Вапник, поспорил с ним на хороший обед, что к 2000 году нейронные сети будут так же понятны, как метод опорных векторов. Он проиграл. В ответ Вапник поспорил, что к 2005 году никто не будет пользоваться нейронными сетями. И тоже проиграл. (Единственным, кто бесплатно пообедал, был Янн Лекун, их свидетель.) Более того, с появлением глубокого обучения коннекционисты снова взяли верх. При условии обучаемости, сети со многими слоями могут выражать многие функции компактнее, чем метод опорных векторов, у которого всегда только один слой, а это иногда имеет решающее значение.
Другим заметным ранним успехом метода опорных векторов была классификация текстов, которая оказалась большим благом для зарождающегося интернета. В то время самым современным классификатором был наивный байесовский алгоритм, но, когда каждое слово в языке — это измерение, даже он мог начать переобучаться. Для этого достаточно слова, которое по случайности в тренировочных данных встречается на всех спортивных страницах и ни на каких других: в этом случае у наивного Байеса появятся галлюцинации, что любая страница, содержащая это слово, посвящена спорту. А метод опорных векторов благодаря максимизации зазора может сопротивляться переобучению даже при очень большом числе измерений.
В целом чем больше опорных векторов выбирает метод, тем лучше он обобщает. Любой обучающий пример, который не представляет собой опорный вектор, будет правильно классифицирован, если появится в тестовой выборке, потому что граница между положительными и отрицательными примерами по-прежнему будет на том же месте. Поэтому ожидаемая частота ошибок метода опорных векторов, как правило, равна доле примеров, являющихся опорными векторами. По мере роста числа измерений эта доля тоже будет расти, поэтому метод не застрахован от проклятия размерности, но он более устойчив к нему, чем большинство алгоритмов.
Кроме практических успехов, метод опорных векторов перевернул с ног на голову много воззрений, которые олицетворяли здравый смысл в машинном обучении. Например, опроверг утверждение, которое иногда путают с бритвой Оккама, что более простые модели точнее. Метод может иметь бесконечное число параметров и все равно не переобучаться при условии, что у него достаточно большой зазор.
Самое неожиданное свойство метода опорных векторов заключается в следующем: какие бы изогнутые границы он ни проводил, эти границы всегда будут прямыми линиями (или гиперплоскостями). В этом нет противоречия. Причина заключается в том, что прямые линии будут находиться в другом пространстве. Допустим, примеры живут на плоскости
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии