Теперь прототипы надо обновить. Подразумевается, что прототип кластера должен быть средним его членов: когда кластеры состояли из одного члена, все так и было, но теперь мы добавили к ним новые элементы, и ситуация изменилась. Поэтому мы вычислим средние свойства членов для каждого кластера и сделаем полученный результат новым прототипом. Теперь нужно снова обновить принадлежность объектов кластерам: поскольку прототипы изменились, мог измениться и прототип, наиболее близкий данному объекту. Давайте представим, что прототип одной категории — это мишка, а другой — банан. Если взять крекер в виде животного, при первом подходе он может попасть в группу с медведем, а при втором — с бананом. Изначально крекер выглядел как игрушка, но теперь он будет отнесен к еде. Если переместить крекер в одну группу с бананом, прототип для этой группы тоже может измениться: это уже будет не банан, а печенье. Этот полезный цикл, который относит объекты ко все более и более подходящим кластерам, станет продолжаться, пока кластеры сущностей (а с ними и прототипы кластеров) не прекратят меняться.
Такой алгоритм называется метод
Более серьезная проблема заключается в том, что метод
Допустим, мы пришли к выводу, что разрешить Робби слоняться по реальному миру — слишком медленный и громоздкий способ обучения, и вместо этого посадили его смотреть сгенерированные компьютером изображения, как будущего летчика в авиационном тренажере. Мы знаем, из каких кластеров взяты картинки, но не скажем об этом Робби, а будем создавать их, случайно выбирая кластер (скажем, «игрушки»), а потом синтезируя пример этого кластера (маленький пухлый бурый плюшевый медведь с большими черными глазами, круглыми ушами и галстуком-бабочкой). Кроме того, мы будем произвольно выбирать свойства примера: размер мишки — в среднем 25 сантиметров, мех с вероятностью 80 процентов бурый, иначе — белый и так далее. После того как Робби увидит очень много сгенерированных таким образом картинок, он должен научиться делить их на кластеры «люди», «мебель», «игрушки» и так далее, потому что люди, например, больше похожи на людей, а не на мебель. Возникает интересный вопрос: какой алгоритм кластеризации лучше с точки зрения Робби? Ответ будет неожиданным: наивный байесовский алгоритм — первый алгоритм для обучения с учителем, с которым мы познакомились. Разница в том, что теперь Робби не знает классов и ему придется их угадать!
Очевидно: если бы Робби их знал, все пошло бы отлично — как в наивном байесовском алгоритме, каждый кластер определялся бы своей вероятностью (17 процентов сгенерированных объектов — игрушки) и распределением вероятности каждого атрибута среди членов кластера (например, 80 процентов игрушек коричневые). Робби мог бы оценивать вероятности путем простого подсчета числа игрушек в имеющихся данных, количества коричневых игрушек и так далее, но для этого надо знать, какие предметы — игрушки. Эта проблема может показаться крепким орешком, но, оказывается, мы уже знаем, как ее решить. Если бы в распоряжении Робби имелся наивный байесовский классификатор и ему необходимо было определить класс нового предмета, нужно было бы только применить классификатор и вычислить вероятность класса при данных атрибутах объекта. Маленький, пухлый, коричневый, похож на медведя, с большими глазами и галстуком-бабочкой? Вероятно, игрушка, но, возможно, животное.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии