Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Коэн внес значительный вклад в различные области математики, такие как теория чисел, математический анализ и логика. В1966 году на Международном математическом конгрессе в Москве он получил Филдсовскую премию — самую престижную математическую награду — за работу над континуум-гипотезой. Пол Коэн скончался в Калифорнии в марте 2007 года.

Кантор безуспешно пытался доказать ее в течение многих лет. К 1900 году решения все еще не было, и Гильберт поставил эту гипотезу на первое место в списке проблем в своем знаменитом докладе на конгрессе в Париже.

Решение проблемы в том виде, в каком мы знаем его сейчас, было получено в два этапа. Первый был завершен Гёделем в конце 1930-х годов. В 1938 и 1940 годах Гёдель опубликовал две статьи, где вкратце изложил различные аспекты первой части решения, которое детально изложено в курсе, прочитанном в Институте перспективных исследований. Конспекты курса были изданы в форме книги в 1940 году.

Вторую часть решения получил в 1963 году Пол Коэн — американский математик, который также работал в Институте перспективных исследований. Говорят, Коэн первым показал свое решение Гёделю, но когда он пришел к знаменитому коллеге, тот как раз переживал пик маниакально-депрессивного кризиса и не захотел впускать гостя, поэтому ему пришлось просовывать бумаги под дверь. Через несколько дней Гёдель позвонил коллеге и пригласил выпить чаю, из чего Коэн сделал вывод, что его решение верно. И действительно, за эту работу ученый в итоге получил Филдсовскую премию — для математиков она эквивалентна Нобелевской.

РЕШЕНИЕ ГЁДЕЛЯ И КОЭНА

Верна ли континуум-гипотеза? Это до сих пор неизвестно, поскольку ответ, найденный Гёделем и Коэном, состоит в том, что ни подтвердить континуум-гипотезу, ни опровергнуть ее невозможно на основе аксиом теории множеств. Если обозначить СН высказывание, в котором говорится, что "не существует множества с кардинальным числом, промежуточным между N и R", то СН для теории множеств — это идеальный пример первой теоремы Гёделя о неполноте: ни оно, ни его отрицание недоказуемы.

Как Гёдель и Коэн доказали это? Обозначим • абстрактную числовую операцию и предположим, что она удовлетворяет двум аксиомам:

— аксиома 1: операция коммутативна, то есть a • b = b • а;

— аксиома 2: у операции есть нейтральный элемент, то есть такой, что при операции с ним не происходит никаких изменений (если этот нейтральный элемент назвать е, то а • е = а).

Моделью назовем любой конкретный пример, любую специфическую операцию, выполняющую эти аксиомы. Например, сумма целых чисел — это модель, поскольку сумма коммутативна и имеет нейтральный элемент (то есть 0). Произведение целых чисел — также модель, поскольку эта операция также коммутативна и имеет нейтральный элемент (то есть 1). Вычитание целых чисел, наоборот, не является моделью, поскольку оно некоммутативно (например, 2 - 3 — не то же самое, что 3-2).

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' — элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е — нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

Сверху — аксиомы коммутативной операции с нейтральным элементом. Слева внизу — пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу — пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука