Если бы существование поглощающего элемента было доказуемым на основе аксиом, то любая коммутативная операция с нейтральным элементом обладала бы поглощающим элементом. Однако это не так, поскольку у суммы, коммутативной операции с нейтральным элементом, нет поглощающих элементов. Следовательно, утверждение Р недоказуемо на основе аксиом 1 и 2.
А если бы отсутствие поглощающего элемента было доказуемым, то ни одна операция, выполняющая аксиомы 1 и 2, не имела бы поглощающих элементов. Однако у произведения целых чисел он есть, поскольку 0 — поглощающий элемент, так что отрицание Р также недоказуемо на основе аксиом. Существование или отсутствие поглощающего элемента не может быть ни доказано, ни опровергнуто на основе аксиом 1 и 2 (см. схему на этой странице).
Гёдель приводит подобные рассуждения в своей второй статье по теории относительности, чтобы опровергнуть факт, утверждаемый Джеймсом Джинсом, о том, что в рамках теории относительности можно определить понятие абсолютного времени. Гёдель отвечает ему, что поскольку он нашел модели теории, в которых этого понятия не существует, невозможно вывести из уравнений Эйнштейна обязательного существования абсолютного времени.
Вернемся к проблеме Кантора. Способ, которым Гёдель и Коэн доказали, что континуум-гипотеза неразрешима на основе аксиом теории множеств, подобен способу, которым мы воспользовались для доказательства неразрешимости Р относительно аксиом 1 и 2. В статьях 1938 и 1939 годов, а также более детально в книге 1940 года Гёдель демонстрирует модель, выполняющую аксиомы теории множеств, для которой континуум-гипотеза верна. В этой модели нет множеств с промежуточными кардинальными числами между N и R — подобно тому, как мы нашли модель, в которой нет поглощающих элементов. Это доказывает, что СН не может быть опровергнута (если бы ее можно было опровергнуть на основе аксиом, она была бы ложной во всех моделях).
Курт Гёдель, 1949 год
В 1963 году Коэн нашел модель аксиом теории множеств, в которой существует множество с промежуточным кардинальным числом между N и К, то есть модель, в которой СН ложна, и таким образом доказал, что СН не может быть доказана на основе аксиом теории множеств.
Но в стандартной модели, которую мы имеем в виду, формулируя аксиомы теории множеств, континуум-гипотеза истинна или ложна? На этот вопрос еще нет ответа. Многие специалисты считают, что надо найти еще одну аксиому, которую будут согласны принять как верную все заинтересованные лица, и она позволит в конце концов доказать или опровергнуть СН в стандартной модели. Общее мнение, основанное на философских аргументах (Гёдель и Коэн его разделяли), состоит в том, что континуум-гипотеза на самом деле ложна.
ГЛАВА 5
Следствия из работы Гёделя
Теоремы Гёделя о неполноте обозначили поворотную точку в исследованиях, связанных с философией математики. Современные тексты по философии математики обязательно учитывают теоремы Гёделя, анализируют и делают из них выводы, которые часто становятся причиной споров. Изучение следствий из теорем о неполноте едва лишь началось и, возможно, будет длиться еще десятки или сотни лет.
В Принстоне Гёдель нашел спокойный и однообразный социальный климат, идеально подходящий его образу жизни. Однако даже благоприятное окружение не смягчило ни ипохондрию ученого, ни его чудачества. Напротив, с течением времени его странности усилились до такой степени, что в 1941 году директор Института перспективных исследований Франк Эйделотт был вынужден спросить у личного врача Гёделя, существует ли опасность того, что его начинающаяся паранойя станет опасной для него и окружающих. Хотя врач ответил, что такой опасности нет, сам факт возникновения этого вопроса говорит о многом.
Гёделем владел страх болезней, реальных и мнимых. Так, он был убежден, что от отопления и кондиционера исходит плохой воздух, вредный для здоровья. У него был навязчивый страх холода, и нередко в разгар лета ученого видели в пальто, шарфе и перчатках. Как ни парадоксально, этот страх перед болезнями сопровождался полным недоверием к врачам, которое медленно трансформировалось в опасение людей в целом. Его стремление к одиночеству росло, и иногда он проводил долгие периоды, избегая любого контакта с другими, за исключением супруги Адели и двух-трех самых близких друзей.