Машинное обучение присутствует практически во всех сферах современной жизни. Каждый раз, когда мы пользуемся банковскими услугами, делаем покупки в интернете или общаемся в мессенджерах, алгоритмы машинного обучения помогают сделать это взаимодействие удобнее, эффективнее и безопаснее.
В основе машинного обучения лежат алгоритмы, которые разделяются на два основных типа: обучение «с учителем» и без него. Разница заключается в способе изучения данных для последующего прогнозирования.
Практически все мировые технологические лидеры уже приняли стратегию разработки своих продуктов и сервисов по так называемой дата-центричной модели. Она подразумевает построение новых продуктов и сервисов, исходя из имеющихся данных, которыми эти решения будут пользоваться, и данных, которые эти решения будут формировать, обогащая ими текущие информационные массивы и «цифровые профили».
Такие компании, как Alphabet и Google, считают, что ИИ – основа для революции компьютерных технологий, и его влияние на общество будет даже более значительным, чем появление интернета. Крупнейший производитель напитков Coca-Cola в день продает более 1,9 млрд товарных единиц. У компании более 500 брендов. Приведем цитату руководителя производства Coca-Cola Грега Чемберса: «Искусственный интеллект – фундамент всей нашей деятельности. Мы создаем интеллектуальный опыт, и его ядро – это искусственный интеллект»[552].
В качестве еще одного интересного примера можно привести платформу SmartThings компании Samsung, которая может стать первой компанией в мире, реализовавшей концепцию «сетевого (цифрового) дома», в рамках которой все устройства Samsung смогут обмениваться данными в единой цифровой экосистеме. Все это открывает поистине безграничные возможности для различных новых сервисов и формата взаимодействия с потребителями на уровне проектов и сервисов. В этой связи можно констатировать что любой разработчик цифровой экосистемы, получившей широкой распространение и ставшей неким стандартом объединения и работы с данными/продуктами/сервисами, получит огромное преимущество в будущем.
18.1.3. Развитие интернета вещей
Интернет плотно вошел и в нашу жизнь, и в окружающую нас действительность. Это не только компьютеры, смартфоны и планшеты, с помощью которых мы «выходим в интернет». Речь идет практически обо всей бытовой технике. Холодильники считывают сроки годности и составы продуктов, пылесосы и метеодатчики работают в доме в наше отсутствие, современные автомобили считывают всевозможные показатели, от траффика до метеоусловий, а «проникновение» интернета в медицинские приборы вызывает настоящее восхищение. Все эти предметы генерируют и собирают данные, причем объем этих данных поистине огромный. Огромное количество приложений обрабатывают эти данные и генерируют новые: холодильники подсказывают, когда у каких продуктов истечет срок годности, состав всего загруженного в них, часы обладают множеством функций, подсказывающих сколько шагов, калорий уже потрачено, когда необходимо пить воду. Автомобили пользуются машинным зрением – сами паркуются, поворачивают и тормозят. Все эти функции были бы невозможны без надлежащей обработки информации, трактовки исторических данных и соответствующей синхронизации и обмена информацией по каналам всемирной сети интернет.
Во всех этих примерах важно отметить различные аспекты работы или, здесь уже можно сказать, управления данными, которые мы уже успели рассмотреть в этой книге. Действительно, все начинается с «понимания» (семантики) данных – холодильник должен понять «что» в него ставят, при этом речь не идет о стандартных бирках – могут быть разные магазины, продуктовые рынки и даже ручная корректировка вводимых данных. Вопрос качества данных безусловно очень важен, ведь если умные часы собирают геоданные с ошибкой, то все приложения, использующие эту информацию, будут давать неверные результаты скорости движения, геопозиционирования и пр. Ну и конечно, функции мониторинга потоков данных со всевозможных датчиков, «раскладки этих данных» согласно семантике и метаданных являются основополагающими для всех этих приложений трекеров, смартфонов, телемедицины, автомобильной, спортивной и прочих отраслей.