Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Чтобы доказать, что почти никакие функции не являются вычислимыми, Алан Тьюринг использовал хитроумный вариант диагонального метода Кантора, рассмотренный в главе 2. В ней мы рассказали, что не существует способа упорядочить список последовательностей, состоящих из нулей и единиц. Когда мы предполагали, что можем расположить одну последовательность после другой, изменяя значения элементов по диагонали, нам удалось сформировать последовательность из нулей и единиц, которая не совпадала ни с одной последовательностью в списке. Аналогичным образом можно показать, что множество функций не является счетным.

Мы указали, что функция — это отображение, сопоставляющее 0 и f(0), 1 и f(1), 2 и f(2) и т. д. до бесконечности. Следовательно, вся информация содержится в последовательности чисел f(0), f(1), f(2), f(3)… Для простоты будем рассматривать только функции, которые принимают значения 0 и 1, например функцию f, значение которой равно 0 для четных чисел и 1 — для нечетных. В этом случае вся информация f содержится в последовательности 0101010101…, так как если мы хотим найти отображение n, достаточно перейти к n-му члену этой последовательности. Надеемся, мы убедили читателя, что функции, которые принимают только значения 0 и 1, эквивалентны бесконечным последовательностям нулей и единиц. Следовательно, множество функций не является счетным!

Каждая машина Тьюринга вычисляет значение единственной функции, поэтому утверждать, что все функции являются вычислимыми, можно, лишь доказав, что существует по меньшей мере столько же машин, сколько и функций, значения которых мы хотим вычислить. Однако Тьюринг установил, что бесконечное множество его машин намного меньше. Чтобы показать, что множество функций не является счетным, сначала следовало записать их в виде последовательностей из нулей и единиц. Мы можем записать в виде символов любую машину Тьюринга, поскольку она представляет собой конечную последовательность инструкций, и каждую из них можно записать несколькими символами. Как вы уже увидели, (#1,1, L, #3) означает то же, что и «Инструкция номер 1: если считан символ 1, сместиться влево и перейти к третьей инструкции». Представив машину Тьюринга как последовательность инструкций, читатель сможет найти способ, позволяющий записать все возможные машины Тьюринга в виде списка.

Больший интерес для нас будет иметь процесс «гёделизации», рассмотренный в главе 4. Он заключается в присвоении огромных натуральных чисел каждой формуле логики первого порядка так, что по известному числу можно восстановить исходную формулу. Этот метод, примененный к машинам Тьюринга, позволяет свести всю информацию, содержащуюся в программе, к одному числу. Как и в случае с «гёделизацией», машины Тьюринга соответствуют не всем числам, а только тем, которые обладают определенными свойствами. Хотя существует бесконечное множество машин Тьюринга, его размеры не могут превышать размеры множества натуральных чисел, так как всякая машина Тьюринга кодируется с помощью натуральных чисел.

Таким образом, мы доказали, что множество машин Тьюринга является счетным, следовательно, счетным является и множество вычислимых функций, которые по сравнению со множеством всех функций подобны иголке в стоге сена.

Проблема остановки

Лейбниц, а в начале XX века и Давид Гильберт — мечтали создать машину, способную отличать истинные высказывания от ложных. Как мы отметили в главе 3, программа Гильберта по «очистке» математики от парадоксов заключалась не только в формировании ее устойчивого фундамента — с этим справились древние начиная с Евклида, и пока что основы математики стояли прочно. Для абсолютной уверенности в том, что в будущем никакой Рассел не вытащит из рукава новый парадокс, помимо укрепления логической структуры математики, требовалось рассчитать метаматематические структуры, чтобы доказать, что они способны выдержать вес всего здания науки. Первые два вопроса, которыми задался Гильберт, звучали так: является ли математика полной и непротиворечивой, иными словами, совпадает ли истинное и доказуемое, и нет ли риска столкнуться с противоречиями в математике. За три года до того, как Гёдель доказал, что для арифметики эти требования несовместимы, Давид Гильберт и его ученик Вильгельм Аккерман (1896–1962) добавили к этим вопросам еще один, который был изложен на первом пленарном заседании Международного математического конгресса в 1928 году.

Проблема разрешения (Entscheidungsproblem) заключалась в том, чтобы доказать существование алгоритма, на вход которого подается математическое высказывание, а возвращается — «истина» это или «ложь». Хотя множество аксиом должно быть рекурсивно перечислимым, для множества теорем, как вы увидите далее, это требование невыполнимо. Однако сначала воссоздадим сцену, связанную с новой проблемой Гильберта, свидетелем которой был автор этой книги. Этот случай произошел на Международном математическом конгрессе в Мадриде в августе 2006 года.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное