Первым успехом Тьюринга стало определение вычислимой функции. Далее всякий раз, когда мы будем говорить о функции, мы будем иметь в виду функцию, определенную на множестве натуральных чисел и принимающую натуральные значения. Напомним, что функция — это не более чем способ сопоставить каждому числу другое число, которое мы будем называть отображением первого. Чтобы лучше понять изложенное ниже, читатель может представить функцию как машину, которая придает форму закладываемому в нее материалу. Так, наша функция превращает число 3 в другое число, которое мы будем обозначать f(3), где f — первая буква латинского слова «функция». Процесс получения f(
Образ машины может быть обманчивым, и читатель, возможно, поверит, что идеальная машина Тьюринга, о которой мы говорим, в состоянии вычислить значение любой функции, которую только можно себе представить. В действительности дело обстоит с точностью до наоборот: действия, скрытые между входным значением
Первым элементом машины Тьюринга является лента, не имеющая начала и конца (напомним, что речь идет об идеальной машине), разделенная на ячейки. В каждую ячейку помещается только один символ — 0 или 1. Эти символы соответствуют, как известно, двум возможным значениям истинности. Вторым элементом машины Тьюринга является устройство чтения-записи, способное определять, какой символ записан в определенной ячейке, и производить запись поверх него.
После прочтения любого символа устройство чтения-записи может повести себя пятью различными способами: стереть ранее записанное число и записать 0, заменить записанный символ на 1, сместиться вправо, сместиться влево (чтобы эти две операции могли быть выполнены, крайне важно, чтобы бумажная лента не имела ни начала, ни конца) или просто остановиться, никак не реагируя на прочитанный символ. Последовательность действий контролируется конечной последовательностью инструкций, которые указывают, как машина должна реагировать в каждом возможном случае. Например, первая инструкция может звучать так: «Если считан символ 1, сместиться влево и перейти к третьей инструкции». Все инструкции следуют одной и той же схеме.
(источник: «Complexity» Мелани Митчелл).
Как мы уже упоминали, инструкции нумеруются начиная с 1, используются символы 0 и 1, а допустимыми операциями являются запись 0 (0), запись 1(1), переход на ячейку вправо (
Чтобы сделать объяснение более понятным, укажем явно инструкции для всех возможных случаев. Рассмотрим очень простой пример с машиной Тьюринга
Инструкция № 1: Если считан 0, записать 1 и перейти к инструкции № 3.
Инструкция № 1: Если считан 1, сместиться вправо и перейти к инструкции № 2.
Инструкция № 2: Если считан 0, записать 1 и перейти к инструкции № 3.
Инструкция № 2: Если считан 1, остановить выполнение.
Инструкция № 3: Если считан 0, записать 1 и перейти к инструкции № 1.
Инструкция № 3: Если считан 1, остановить выполнение.