Читаем Том 11. Карты метро и нейронные сети. Теория графов полностью

При = 1 (а) доказательство тривиально. Допустим, что это утверждение верно для n прямых (b), и рассмотрим карту, на которой изображена + 1 прямая (с). Если мы удалим одну из линий, то получим карту из n прямых, которую можно раскрасить двумя цветами (верно по индукции). Следовательно, при добавлении (n + 1)-й прямой вверху (или справа) от добавленной прямой все цвета останутся без изменений, а с другой стороны от этой прямой все области изменят цвет на противоположный. Таким образом, карту из n + 1 прямой можно раскрасить всего двумя красками. С учетом соответствующих различий можно заметить, что любую карту из окружностей, случайным образом распределенных на плоскости, также можно раскрасить двумя красками. И в случае с прямыми, и в случае с окружностями все вершины полученного графа будут иметь четную степень. В любом графе, вершины которого имеют четную степень, бóльшую двух, при удалении цикла получится граф, вершины которого по-прежнему будут иметь четную степень. Как и все графы такого типа, его можно будет представить в виде прямых или окружностей. Теорема о двух красках доказана.

Применительно к задачам раскраски во многих случаях интерес представляют только графы, степень каждой вершины которых не превышает 3. Если одна из вершин графа имеет степень больше 3, то можно провести окружность С с центром в этой вершине, которая не будет касаться никакой другой вершины, затем удалить элементы графа внутри этой окружности и получить новый граф с вершинами степени 3, соответствующими пересечениям С и исходных ребер. Если мы раскрасим полученную карту, а затем удалим построенную окружность и вернемся к исходному графу, то задача будет решена, как показано на следующих рисунках. Таким образом, в задачах о раскраске графов иногда можно рассматривать только плоские графы, каждая вершина которых имеет степень 3.

Доказательство теоремы о трех красках сложнее, чем предыдущей, поэтому мы не будем приводить его здесь. Сама теорема звучит так:

«Плоский граф с вершинами степени 3 можно раскрасить тремя красками тогда и только тогда, когда все его грани ограничены четным числом ребер».

* * *

ОХРАННИКИ В МУЗЕЯХ И РАСКРАСКА ГРАФОВ

В 1973 году, анализируя задачу о расположении охранников в залах музея, Виктор Клее задался вопросом: если музей имеет форму многоугольника с n сторонами, какое количество охранников необходимо для того, чтобы они могли просматривать все стены, не двигаясь с места? На первом рисунке изображен выпуклый многоугольник, который легко просматривается одним охранником, стоящим в углу. Однако в случае с невыпуклым многоугольником, изображенным на следующем рисунке, одного охранника уже недостаточно. Ответ задачи таков: для многоугольника с сторонами достаточно [n/3] охранников. (Знак [] обозначает целую часть отделения, то есть результат деления с отброшенными десятичными знаками.)

Любопытно, что в доказательстве используется граф, полученный триангуляцией зала музея (то есть разбиением многоугольника на треугольники). Вершины этого графа можно раскрасить тремя цветами так, что смежные вершины будут окрашены в разные цвета.

* * *

Итак, были открыты признаки графов, для раскраски которых достаточно двух или трех красок, и вскоре стало очевидно, что пяти цветов достаточно для раскраски любого графа. Однако оказалось очень сложно определить, достаточно ли четырех цветов для раскраски любого графа. В математике подобное случалось не раз: частный случай оказывался самым трудным.

Четырех цветов достаточно
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное