Все, что мы делали в лаборатории, было наполнено энергией. В одном случае мы использовали ImageNet для быстрого обучения сотен экземпляров алгоритма классификации изображений для распознавания коллекции повседневных вещей, а затем запустили их одновременно на одной фотографии. Вместо того чтобы просто определять наличие отдельных предметов, в эксперименте искали комбинации объектов, которые что-то говорили обо всей сцене. Например, если детекторы замечали человека, лодку, весло и воду, они классифицировали фотографию в целом как изображение "гребли" - более глубокий уровень понимания, который, возможно, граничит с примитивным видом визуального мышления.
Как и во многих других экспериментах той эпохи, точность используемых нами алгоритмов была нестабильной, и многое еще предстояло сделать - ведь даже простое распознавание изображений еще только зарождалось, - но эти неровности только усиливали дух приключений, охвативший нас. Наша работа казалась смелой и перспективной, нерафинированной, но провокационной. Многое в ней было концептуально простым. Но только после появления ImageNet это стало возможным.
Тем временем Цзя вступал в свои права как ученый. Через год или около того после выхода ImageNet он опубликовал работу под названием "Что нам говорит классификация более 10 000 категорий изображений?", в которой он размышлял о том, как фундаментально меняется распознавание изображений в присутствии ImageNet. Несмотря на то, что это была в основном техническая работа, в ней присутствовал философский подтекст, который отличал ее от типичной академической статьи. В ней чувствовалось пророчество, даже экзистенциальность. Его тезис заключался в том, что ImageNet представляет собой не просто увеличение масштаба, а категориальный сдвиг - то, что физики могли бы назвать "фазовым переходом", при котором меняются даже самые основные свойства явления. Он значительно расширяет диапазон возможностей, с которыми могут столкнуться наши алгоритмы, и ставит перед ними задачи, которые не решали меньшие наборы данных.
Говоря более техническим языком, "семантическое пространство" ImageNet расширялось, становясь все более плотным, и все меньше пространства для дыхания отделяло правильные ответы от неправильных. С практической точки зрения это часто означало, что методы, которые хорошо работали при различении небольшого числа широко варьирующихся категорий, плохо работали при работе с десятью тысячами категорий ImageNet, многие из которых можно было отличить только по тонким различиям. Некоторые методы и вовсе ломались. Это был унизительный, но в конечном счете обнадеживающий знак того, что завтрашние алгоритмы будут не просто более эффективными версиями сегодняшних, но и принципиально другими, причем так, как мы и не предполагали.
Знаете, что мне больше всего понравилось в "Калтехе 101"? Слова Алекса вернули меня в тот момент. "Это были не только учебные данные. Это была возможность сравнить результаты моих собственных исследований с вашими, используя те же самые изображения. Яблоки к яблокам".
"Ориентир", - ответил я.
"Именно так. Это позволило легко измерить прогресс. А что может быть более вдохновляющим для исследователя? Это как вызов. Смелость".
Смелость. Мне это нравилось.
"Хорошо, а что если сделать то же самое с ImageNet?" спросил я, все еще размышляя вслух. "А еще лучше, что если мы организуем целый конкурс вокруг этого?"
"Что-то вроде PASCAL, вы имеете в виду?"
Набор данных PASCAL Visual Object Classes, известный как PASCAL VOC, представлял собой коллекцию из примерно десяти тысяч изображений, разбитых на двадцать категорий. Собранный группой исследователей в Европе, он был похож на Caltech 101, но с существенным отличием: он послужил основой для конкурса компьютерного зрения, который проводится ежегодно с 2005 года. Каждый год участники со всего мира представляли алгоритмы, обученные на наборе данных, которые затем подвергались воздействию нового набора ранее не виденных изображений и ранжировались по точности их классификации. Победителем объявлялся алгоритм с наименьшим числом ошибок. Конкурс, в котором одновременно велось сотрудничество и соревнование, привлек внимание к последним достижениям в этой области. И все это с набором данных, лишь в тысячную долю меньшим, чем ImageNet.
"Вот это было бы интересно", - ответил Алекс. "Как это работает в ImageNet? Я могу представить, как исследователи задают друг другу именно такой вопрос о своей последней идее".
Северная звезда для поля, подумал я.
Если дух статьи Цзя верен и ImageNet действительно предвещает скорую перестановку палубы - новые правила, новые интуиции, может быть, даже совершенно новую парадигму, - что может быть лучше для ее изучения, чем конкурс? Коллективная сила сотрудничества, заряженная энергией конкуренции. Исследовательская, но принципиальная. Яростный. Даже после многих лет работы над созданием ImageNet простое представление этой идеи вдохнуло в нее новую жизнь.
Это также означало, что работа по распространению ImageNet в мире еще не закончена.