Although it was now clear that both light and electrons exhibited wave-particle duality, there were important differences between them. A brief description of the picture as it now appears will help. All particles are associated with fields, and can be described as excitations of those fields. To get some idea of what this means, we can liken the particles to water waves, which are excitations of undisturbed water. However, the analogy is only partial. The classic example of a particle associated with a wave is the photon, which is an excitation of the Maxwell field. Fields and associated particles of different kinds exist. There are fields described by a single number at each point, called scalar fields, and vector fields, which are described by three numbers. Scalar fields represent a simple intensity, while the vector fields – such as Maxwell’s field – are a kind of ‘directed’ intensity. In general relativity we also encountered tensors. Mathematically, scalar, vector and tensor fields belong to one family and obey the same kind of rule under rotations of the coordinate system. In particular, after one rotation they return to the values they had before. However, in 1927 yet another sensational quantum discovery was made, this one by Dirac. He found a quite different family of fields, called
Both electrons and photons can, depending on the circumstances, exhibit wave or particle behaviour. Otherwise they behave very differently. Many photons can be present simultaneously in the same state (a state being a characteristic set of properties of particles, such as position and direction of motion), but for electrons this is impossible – there can be at most one in any given state. The two kinds of particle have different statistical behaviour, so-called Fermi-Dirac statistics for electrons and Bose-Einstein statistics for photons. In fact, there are now known to be many different particles, each with an associated field. They satisfy either Fermi-Dirac statistics, and are thus called
In many ways, the story of fundamental physics during the last seventy years has been the discovery of particles and the understanding of the manner in which they interact. All particles that have so far been discovered – there is a whole ‘zoo’ of them – are either spinor or vector particles. Ironically, particles corresponding to the simplest scalar fields have not yet been discovered, though it is confidently believed that they will be soon, mainly on the grounds of indirect but rather persuasive theoretical arguments. Currently, an immense amount of work is being done in the attempt to unify the two broad categories of particles – fermions and bosons – by means of an idea called