The great mystery was how light could consist of particles yet exhibit wave behaviour. It was clear to Einstein that there must be some statistical connection between the positions of the conjectured light quanta and the continuous intensities of Maxwell’s theory. Perhaps it could arise through significantly more complicated classical wave equations that described particles as stable, concentrated ‘knots’ of field intensity. Maxwell’s equations would then be only approximate manifestations of this deeper theory. Throughout his life, Einstein hankered after an explanation of quantum effects through classical fields defined in a space-time framework. In this respect he was surprisingly conservative, and he famously rejected the much simpler statistical interpretation provided for his discoveries by the creation of quantum mechanics in the 1920s.
In the following years, Einstein published several important quantum papers, laying the foundations of a quantum theory of the specific heats of solids. However, the next major advance came in 1913 with Danish physicist Niels Bohr’s atomic model. It had long been known that atoms emit radiation only at certain frequencies, called
Bohr found a quite different explanation. In a famous experiment, the New Zealander Ernest Rutherford had recently shown that the positive charge in atoms (balanced by the negative charge of the electrons) was concentrated in a tiny nucleus. This discovery was itself very surprising and is illustrated by a well-known analogy. If the space of an atom – the region in which the electrons move – is imagined as being the size of a cathedral, the nucleus is the size of a flea. Bohr supposed that an atom was something like the solar system, with the nucleus the ‘Sun’ and the electrons ‘planets’.
However, he made a seemingly outrageous ad hoc assumption. Using the electrostatic force for the known charges of the electron and positive nucleus, he calculated the electron orbits in Newtonian mechanics for the hydrogen atom, which has only one electron. Each such orbit has a definite angular momentum. Bohr suggested that only orbits for which this angular momentum is some exact multiple of Planck’s constant, i.e. 0,
For hydrogen atoms, it was easy to calculate the energy levels and hence the frequencies of their radiation. Subject to certain further conditions, Bohr’s theory had an immediate success. His hotchpotch of Newtonian theory and strange quantum elements had hardly explained the enigmatic spectral lines, but it did predict their frequencies extraordinarily well, and there could be no doubting that he had found at least some part of a great truth.
During the next decade the Bohr model was applied to more and more atoms, often but not always with success. It was clearly ad hoc. The need for an entirely new theory of atomic and optical phenomena based on consistent quantum principles became ever more transparent, and was keenly felt. Finally, in 1925/6 a complete quantum mechanics was formulated – by Werner Heisenberg in 1925 and Erwin Schrödinger in 1926 (and called, respectively,