If certain simplicity conditions are imposed, only one theory out of the general family meets this condition. It is general relativity. It is this deeper unity that creates the criss-cross fabric of space-time and the great dilemma in the creation of quantum gravity. As we shall see, quantum mechanics needs to deal with three-dimensional things. The dynamical structure of general relativity suggests – and sufficiently strongly for Dirac to have made his ‘counter-revolutionary’ remark – that this may be possible. Yet general relativity sends ambivalent signals. Its dynamical structure says ‘Pull me apart’, but the four-dimensional symmetry revealed by Minkowski says ‘Leave me intact.’ Only a mighty supervening force can shatter space-time.
PART 4
Quantum Mechanics and Quantum Cosmology
If the difference between Newtonian and Einsteinian physics is great, quantum mechanics seems separated from both by a chasm. Most accounts of it, however, do not question the framework, essentially absolute space and time, in which it was formulated. They describe how very small systems – mostly atoms and molecules – behave in an external framework. This may make quantum mechanics appear more baffling than need be.
If quantum mechanics is universally true and applies not only to atoms and molecules but also to apples, the Moon, the stars and ultimately the universe, then we ought to consider
CHAPTER 12
The Discovery of Quantum Mechanics
About a hundred years ago, a dualistic picture of the world took shape. The electron had just been discovered, and it was believed that two quite different kinds of thing existed: charged particles and the electromagnetic field. Particles were pictured as little billiard balls, possessing always definite positions and velocities, whereas electromagnetic fields permeated space and behaved like waves. Waves interfere, and recognition of this had led Thomas Young to the wave theory of light (Figure 22).
By the end of the nineteenth century, the evidence for the wave theory of light was very strong. However, it was precisely the failure of light, as electromagnetic radiation, to behave in all respects in a continuous wavelike manner that led first Max Planck in 1900 and then Einstein in 1905 to the revolutionary proposals that eventually spawned quantum mechanics. A problem had arisen in the theory of ovens, in which radiation is in thermal equilibrium with the oven walls at some temperature. Boltzmann’s statistical methods, which had worked so well for gases, suggested that this could not happen, and that to heat an oven an infinite amount of energy would be needed. The point is that radiation can have any wavelength, so radiation with infinitely many different wavelengths should be present in the oven. At the same time, the statistical arguments suggested that, on average, the same finite amount of energy should be associated with the radiation when in equilibrium. Therefore there would be an infinite amount of energy in the oven – clearly an impossibility. Baking ovens broke the laws of physics! Planck was driven to assume that energy is transferred between the oven walls and the radiation not continuously but in ‘lumps’, or ‘quanta’.