Читаем The End of Time: The Next Revolution in Physics полностью

If certain simplicity conditions are imposed, only one theory out of the general family meets this condition. It is general relativity. It is this deeper unity that creates the criss-cross fabric of space-time and the great dilemma in the creation of quantum gravity. As we shall see, quantum mechanics needs to deal with three-dimensional things. The dynamical structure of general relativity suggests – and sufficiently strongly for Dirac to have made his ‘counter-revolutionary’ remark – that this may be possible. Yet general relativity sends ambivalent signals. Its dynamical structure says ‘Pull me apart’, but the four-dimensional symmetry revealed by Minkowski says ‘Leave me intact.’ Only a mighty supervening force can shatter space-time.

Note added for this printing. New work summarized on p. 358 could significantly change the situation discussed in this final section of the chapter. It suggests that the timeless Machian approach is capable of leading to a complete derivation of general relativity and that it is not necessary to presuppose ‘a higher tour-dimensional unity and symmetry.’ Since this new work has only just been published and has not yet been exposed to critical examination, I decided to leave the original text intact. However, as already indicated in the note at the end of the Preface, this new work does have the potential to strengthen considerably the arguments for the nonexistance of time.

PART 4

Quantum Mechanics and Quantum Cosmology

If the difference between Newtonian and Einsteinian physics is great, quantum mechanics seems separated from both by a chasm. Most accounts of it, however, do not question the framework, essentially absolute space and time, in which it was formulated. They describe how very small systems – mostly atoms and molecules – behave in an external framework. This may make quantum mechanics appear more baffling than need be.

If quantum mechanics is universally true and applies not only to atoms and molecules but also to apples, the Moon, the stars and ultimately the universe, then we ought to consider quantum cosmology. What does the quantum mechanics of the universe look like? It cannot be formulated in an external framework. Like classical physics, quantum cosmology needs a description without a framework. We shall see that many apparent differences between classical and quantum mechanics then appear in a different light. What remains is one huge difference. We shall soon begin to get to grips with it.

CHAPTER 12

The Discovery of Quantum Mechanics

About a hundred years ago, a dualistic picture of the world took shape. The electron had just been discovered, and it was believed that two quite different kinds of thing existed: charged particles and the electromagnetic field. Particles were pictured as little billiard balls, possessing always definite positions and velocities, whereas electromagnetic fields permeated space and behaved like waves. Waves interfere, and recognition of this had led Thomas Young to the wave theory of light (Figure 22).

By the end of the nineteenth century, the evidence for the wave theory of light was very strong. However, it was precisely the failure of light, as electromagnetic radiation, to behave in all respects in a continuous wavelike manner that led first Max Planck in 1900 and then Einstein in 1905 to the revolutionary proposals that eventually spawned quantum mechanics. A problem had arisen in the theory of ovens, in which radiation is in thermal equilibrium with the oven walls at some temperature. Boltzmann’s statistical methods, which had worked so well for gases, suggested that this could not happen, and that to heat an oven an infinite amount of energy would be needed. The point is that radiation can have any wavelength, so radiation with infinitely many different wavelengths should be present in the oven. At the same time, the statistical arguments suggested that, on average, the same finite amount of energy should be associated with the radiation when in equilibrium. Therefore there would be an infinite amount of energy in the oven – clearly an impossibility. Baking ovens broke the laws of physics! Planck was driven to assume that energy is transferred between the oven walls and the radiation not continuously but in ‘lumps’, or ‘quanta’.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука