Читаем The End of Time: The Next Revolution in Physics полностью

To see why, it is helpful to trace the development of his thinking – a fascinating story in its own right. As an extremely ambitious student, he read Mach’s critique of Newton’s absolute space. This made him very sceptical about its existence. Simultaneously, he was exposed to all the issues related to the aether in electrodynamics. Lorentz, in particular, had effectively identified absolute space with the aether, in the form of an unambiguous state of rest. But, writing to his future wife Mileva in August 1899, Einstein was already questioning whether motion relative to the aether had any physical meaning. This would develop into one of the key ideas of special relativity. If it is impossible to detect motion relative to it, the aether cannot exist. It was natural for Einstein to apply the same thought to absolute space.

His 1905 paper killed the idea that uniform motion relative to any kind of absolute space or aether could be detected. But Newton had based his case for absolute space on the detection not of uniform motion, but of acceleration. In 1933, Einstein admitted that in 1905 he had wanted to extend the relativity principle to accelerated as well as uniform motion, but could not see how to. The great inspiration – ‘the happiest thought of my life’ – came in 1907 when he started to consider how Newtonian gravity might be adapted to the framework of special relativity. He suddenly realized the potential significance of the fact, noted by Galileo and confirmed with impressive accuracy by Newton, that all bodies fall with exactly the same acceleration in a gravitational field.

Most physicists saw this as a quirk of nature, but Einstein immediately decided to elevate it to another great principle and exploit it as he had the relativity principle. Unable to divine new laws of gravitation straight off, he formulated the equivalence principle, according to which processes must unfold in a uniform gravitational field in exactly the same way as in a frame of reference accelerated uniformly in a space free of gravity. He argued that pure acceleration could not be distinguished from uniform gravitation. Suppose that you awoke from a deep narcotic sleep in a dark bedroom to find that gravity was mysteriously stronger. There could be two different causes. You might have been transported, bedroom and all, to another planet with stronger gravity. But you might still be on the Earth but in an elevator accelerating uniformly upward. No experiments you could perform in your bedroom would enable you to distinguish between these alternatives.

Einstein saw here a striking parallel with the relativity principle. The relativity principle prevented an observer from detecting uniform motion. In its turn, the equivalence principle prevented an observer from detecting uniform acceleration – observed acceleration could be attributed either to acceleration in gravity-free space or to a gravitational field. Einstein recognized the immediate short-term potential of his new principle. He knew how processes unfolded in gravity-free space. Mere mathematics showed how they would appear in an accelerated frame, but by the equivalence principle it was possible to deduce that these same processes must occur in a uniform gravitational field. Once again, Einstein’s inspired selection of a simple universal principle – all bodies fall in the same way – enabled him to perform a startling conjuring trick. He showed that the rate of clocks must depend on their position in a gravitational field. Clocks closer to gravitating bodies must run slow relative to clocks farther away.

This fact is often said to show that ‘time passes more slowly’ near a gravitating body. However, objective facts within relativity can seem utterly mysterious and logically impossible if we imagine time as a river. Such a time does not exist. Relativity makes statements about actual clocks, not time in the abstract. It is easy to imagine – and physicists now find it comparatively easy to verify – that otherwise identical clocks run at different rates at the top and bottom of a higher tower. Incidentally, the ‘time dilation’ effect in gravity is much easier to accept than the similar effect associated with motion. There is no reciprocal slowing down. Thus, observers at the top and bottom of the tower both agree that the clock at the top runs faster.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука