These three basic relationships between events – being time-like, spacelike or light-like – are the same in all Lorentz frames. This is because the three types are determined by the light cones, which are real features in space-time, just as rivers are real features of a continent. In contrast, the coordinate axes are like lines ‘painted’ on space-time – they are no more real than the grid lines on a map. Moreover, in a change from one frame to another, the coordinate axes never cross the light cones. The time axis moves but stays within the light cone, while the space axes stay within the ‘present’ as defined above. This is illustrated in Figure 28 for space with two dimensions, which shows how the light cone gets its name. It also highlights the great difference between the Newtonian and Einsteinian worlds. In the former, past, present and future are defined throughout the universe, and the present is a single simultaneity hyperplane. In the latter, they are defined separately for each event in space-time, and the present is much larger.
Now we can talk about distance. In ordinary space it is always positive. The distance relationships are reflected in Pythagoras’ theorem: the square of the hypotenuse in any right-angled triangle is equal to the sum of the squares of the other two sides:
Minkowski was led to introduce a ‘distance’ in space-time by noting a curious fact. For observers who use the
There are several important things about this result. Einstein had shown that observers moving relative to each other would not agree about distances and times between pairs of events. However, Minkowski found something on which they will always agree. Measurements of the space-like separation (by a rod) and the time-like separation (by a clock) of the same two events
What is more, Minkowski showed that it is very natural to regard space and time together as a kind of four-dimensional country in which any two points (events in space-time) are separated by a ‘distance’. This ‘distance’, found by measurements with both rods and clocks, is to be regarded as perfectly real because everyone will agree on its value. In fact, Minkowski argued that it is more real than ordinary distances or times, since different observers disagree on them. Only the ‘distance’ in space-time is always found to be the same. But it is a novel distance – positive for the time-like
Almost everything mysterious and exciting about special relativity arises from the enigmatic minus sign in the space-time ‘distance’. It causes the ‘skewing’ of both axes of the starred frame of the starred twins in Figure 25, and leads to the single most startling prediction – that it is possible, in a real sense, to travel into the future, or at least into the future of someone else, since the future as such is not uniquely defined in special relativity. What we call space and time simply result from the way observers choose to ‘paint coordinate systems’ on space-time, which is the true reality. Minkowski’s diagrams made all these mysteries transparent – and intoxicatingly exciting for physicists. However, this is not the place to discuss time travel and the other surprises of relativity, which are dealt with extensively in innumerable other books.