Читаем The End of Time: The Next Revolution in Physics полностью

These three basic relationships between events – being time-like, spacelike or light-like – are the same in all Lorentz frames. This is because the three types are determined by the light cones, which are real features in space-time, just as rivers are real features of a continent. In contrast, the coordinate axes are like lines ‘painted’ on space-time – they are no more real than the grid lines on a map. Moreover, in a change from one frame to another, the coordinate axes never cross the light cones. The time axis moves but stays within the light cone, while the space axes stay within the ‘present’ as defined above. This is illustrated in Figure 28 for space with two dimensions, which shows how the light cone gets its name. It also highlights the great difference between the Newtonian and Einsteinian worlds. In the former, past, present and future are defined throughout the universe, and the present is a single simultaneity hyperplane. In the latter, they are defined separately for each event in space-time, and the present is much larger.

Now we can talk about distance. In ordinary space it is always positive. The distance relationships are reflected in Pythagoras’ theorem: the square of the hypotenuse in any right-angled triangle is equal to the sum of the squares of the other two sides: H2 = A2+B2.

Minkowski was led to introduce a ‘distance’ in space-time by noting a curious fact. For observers who use the xy frame in Figures 27 and 28, event A is separated from O by the space-like interval EA and by the time-like interval DA. For observers who use the starred frame, however, O and A are at the same space point and are merely separated by the time-like interval OA. The xy observers measure EA with a rod and DA with a clock, obtaining results X and T, respectively. With their clock, observers in the starred frame can measure only the time-like interval OA. Now, their clock runs at a different rate to the xy clock, so they will find that OA is not T but Tstarred. Using Einstein’s results, Minkowski found that (Tstarred)2 = T2X2. This is just like Pythagoras’ theorem, except for the minus sign.

There are several important things about this result. Einstein had shown that observers moving relative to each other would not agree about distances and times between pairs of events. However, Minkowski found something on which they will always agree. Measurements of the space-like separation (by a rod) and the time-like separation (by a clock) of the same two events O and A can be made by observers moving at any speed. They will all disagree about the results of the separate measurements, but they will all find the same value for the square of the time-like separation minus the square of the space-like separation. It will always be equal to the square of the time-like separation, called the proper time, of the unique observer for whom O and A are at the same space position. This result created a sensation. Space and time, like rods and clocks, seem to have completely different natures, but Einstein and Minkowski showed that they are inseparably linked.

What is more, Minkowski showed that it is very natural to regard space and time together as a kind of four-dimensional country in which any two points (events in space-time) are separated by a ‘distance’. This ‘distance’, found by measurements with both rods and clocks, is to be regarded as perfectly real because everyone will agree on its value. In fact, Minkowski argued that it is more real than ordinary distances or times, since different observers disagree on them. Only the ‘distance’ in space-time is always found to be the same. But it is a novel distance – positive for the time-like OA in Figure 27, zero for the light-like OF and negative for the space-like OC. (It is a convention, often reversed, to make time-like separations positive and space-like ones negative. What counts is that they have opposite signs. Also, if the units of space and time are not chosen to make the speed of light c equal to 1, the square of the space-time ‘distance’ becomes (cT)2 – X2.)

Almost everything mysterious and exciting about special relativity arises from the enigmatic minus sign in the space-time ‘distance’. It causes the ‘skewing’ of both axes of the starred frame of the starred twins in Figure 25, and leads to the single most startling prediction – that it is possible, in a real sense, to travel into the future, or at least into the future of someone else, since the future as such is not uniquely defined in special relativity. What we call space and time simply result from the way observers choose to ‘paint coordinate systems’ on space-time, which is the true reality. Minkowski’s diagrams made all these mysteries transparent – and intoxicatingly exciting for physicists. However, this is not the place to discuss time travel and the other surprises of relativity, which are dealt with extensively in innumerable other books.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука