Читаем The End of Time: The Next Revolution in Physics полностью

EINSTEIN’S WAY TO GENERAL RELATIVITY

For physicists, ‘relativity’ has two different meanings. The more common is the one employed by Einstein when he created relativity. He related it to the empirical fact, first clearly noted by Galileo in 1632, that all observations made within an enclosed cabin on a ship sailing with uniform speed are identical to observations made when the ship is at rest. Einstein illustrated this fact with experiments on trains. The lesson he drew from it was that uniform motion as such could not be detected by any experiment. The laws of nature could therefore not be expressed in a unique frame of reference known to be at rest. They could be expressed only in any one of a family of distinguished frames in uniform motion relative to one another. The relativity principle states that the laws of nature have the identical form in all such frames. For reasons shortly to be explained, this later became known as the restricted or special relativity principle.

This meaning of relativity is tied to a special feature of the world – the existence of the distinguished frames and their equivalence for expressing the laws of nature. The other meaning of relativity is more primitive and less specific. It simply recognizes that space and time are invisible: all we ever see are objects and their relative motions. We can speak meaningfully of the position and motion of an object only if we say how far it is from other objects. Position and motion are relative to other objects. This is often called kinematic relativity, to distinguish it from Galilean relativity.

Both relativity principles have played important – often decisive – roles in physics. Copernicus and Kepler used kinematic relativity to great effect in the revolution they brought about. Galileo used the other relativity principle to explain how we can live on the Earth without feeling its motion. That was almost as wonderful a piece of work as Einstein’s, nearly three hundred years later. A natural question is this: what is the connection between the two relativity principles? Any satisfactory answer must grapple with and resolve the issue of the distinguished frames of reference. How are they determined? What is their origin? As we have seen, neither Einstein nor Minkowski addressed these questions when they created special relativity, and they have been curiously neglected ever since. This is a pity, since they touch upon the nature of time. We cannot say what time is – and whether it even exists – until we know what motion is.

Poincaré sought to unite the two relativity principles in a single condition on the structure of dynamics, as formulated in the two-snapshots idea. Had he succeeded, he would have derived the empirical fact of Galilean relativity solely on the basis of a natural criterion derived from kinematic relativity. He died without taking this idea any further, but in any case it is doubtful whether the two relativity principles can be fully fused into one. Poincaré formulated his idea in 1902, before the relativistic intermingling of space and time became apparent, and it is hard to see how that can ever be derived from the bare fact of kinematic relativity. It is, however, of great interest to see how far Poincaré’s idea can be taken. We shall come to this when we have seen how Einstein thought about and developed his own relativity principle and thereby created general relativity.

It is important not to be overawed by the genius of Einstein. He did have blind spots. One was his lack of concern about the determination in practice of the distinguished frames that play such a vital role in special relativity – he simply took them for granted. It is true that they are realized approximately on the reassuringly solid Earth in skilfully engineered railway carriages. But how does one find them in the vast reaches of space? This is not a trivial question. Matching this lack of practical interest, we find an absence of theoretical concern. Einstein asked only what the laws of nature look like in given frames of reference. He never asked himself whether there are laws that determine the frames themselves. At best, he sought an indirect answer and got into a muddle – but a most creative muddle.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука