Множество вариантов симметричных и асимметричных структур возникает, если отдельным интенсиалам или экстенсорам - давлению, температуре, электрическому потенциалу, объему, энтропии и т.д. - задавать постоянные значения; соответствующие признаки симметрии легко определяются с помощью характеристических функций. Еще большего разнообразия можно достичь, если интенсиалы, экстенсоры или их совокупности изменять по произвольной, заранее заданной программе. Такой подход таит в себе колоссальные возможности. Помимо получения разнообразных структур он позволяет также резко интенсифицировать все процессы. При этом удается не только повысить величину ожидаемого эффекта, но и многократно сократить время его достижения; особенно сильно это проявляется при осуществлении периодически повторяющихся процессов.
Действительно, в условиях постоянных интенсиалов система всегда стремится достичь состояния равновесия, когда интенсиалы выравнивают свои значения в ее объеме, а их градиенты уменьшаются. Скорость всех процессов при этом постепенно замедляется, асимптотически приближаясь к нулю. Практически здесь работает классическая, равновесная термодинамика. Если же интенсиалы периодически изменяют свои значения, то каждый раз возникают их большие градиенты, это импульсами повышает потоки веществ и их взаимное влияние, все процессы ускоряются. При этом действует уже термодинамика реальных процессов. Здесь важно подчеркнуть следующее обстоятельство: благодаря взаимному влиянию импульсное воздействие даже на какое-либо одно явление неизбежно вызывает активизацию, интенсификацию всех остальных. Это сильно упрощает и облегчает достижение многих полезных эффектов, некоторые из них на первый взгляд кажутся даже трудно объяснимыми. Приведу несколько примеров.
Начну с метрического (кинетического) явления. Около 35 лет назад замечательный эстонский ученый и изобретатель И. Хинт получил авторское свидетельство на принцип механической активации веществ быстро следующими друг за другом ударами. Этот принцип получил наименование дезинтеграции [85, 86], для его практического использования в народном хозяйстве автором был создан специальный научно-производственный кооператив «Дезинтегратор».
В ходе механической активации изменяются все физико-химические, термофизические, в том числе хрональные и другие свойства веществ. Было установлено, что активированные продукты оказывают благотворное влияние на организм, поэтому они использовались для лечебных целей; теперь ясно, что основную роль при этом играет хрональное явление, активированное метрическим. Активация строительных материалов позволила создать новую высокоэффективную технологию производства крупных блоков, например, из силикальцита; эта технология строительства с большим успехом внедрялась у нас в стране и за рубежом.
К сожалению, в то время обсуждаемые эффекты взаимного влияния были мало известны, поэтому не находили должного признания в научных сферах; особенно много нареканий вызывало трудно объяснимое лечебное действие активированных продуктов. Да и сама кооперативная форма организации труда шла вразрез с бытовавшими тогда порядками. В результате все это закончилось трагично для автора и его дела - тюрьмой, смертью и т.д.
Другой пример касается термического явления и его влияния на процессы, происходящие при термообработке чугуна и стали. Пионером в этой области следует считать В.К. Федюкина, который воспользовался уравнениями ОТ [79, с.6; 80, с.35] и разработал новую высокоэффективную технологию, она заключается в многократном быстром нагреве и еще более быстром охлаждении чугуна, соответствующий процесс назван термоциклированием. Возникающие при термоциклировании большие градиенты температуры в соответствии с законом увлечения способствуют быстрому протеканию нужных процессов термодиффузии и микроликвации. В результате, например, при пяти циклах теплового воздействия на коленчатый вал длительность термообработки снижается с 16 до 2 ч при существенном повышении всех механических свойств чугуна [79, с.23]. Аналогичные ценные результаты были получены при термоциклировании стали (В.К. Пустовойт, 1972 г.).
Третий пример тоже связан с термическим явлением и диффузией. Изотермическое насыщение поверхности стальных изделий азотом (азотизация), углеродом (цементация), азотом и углеродом (нитроцементация), алюминием (алитирование) и т.д. обычно длится 4-8 ч. Но если поверхность изделия покрыть специальной пастой, содержащей нужное вещество, и создать большой градиент температуры, например, в электрическом поле токов высокой частоты, тогда длительность процесса насыщения сократится до нескольких минут. Например, для нитроцементации была использована паста следующего состава мас. % [17, с.233]:
Красная кровяная соль 15
Барий углекислый 20
Сажа голландская 45
Поташ 20