Читаем Термодинамика реальных процессов полностью

Весьма важно подчеркнуть, что в описанных вечных двигателях второго рода циркуляция жидкости и пара является реальным термодинамическим процессом, сопровождаемым трением, или диссипацией, по существующей терминологии. Теплота трения непрерывно поглощается, утилизируется на мембране, следовательно, диссипация не только не приводит к деградации энергии циркулирующего потока жидкости и пара, как того требует второй закон Клаузиуса, но, наоборот, поддерживает эту циркуляцию, является движущей причиной циркуляции. Так, диссипация из бича Вселенной, по Клаузиусу, превращается в стимул ее существования по ОТ.

Интересно отметить, что в фазовом ПД паровой и жидкостный участки циркуляционного контура представляют собой две ветви термодинамической пары, именуемой поверхностно-фильтрационной [18, с.326; 21, с.334]. Спаями этой пары служат поверхности (мениски) жидкости - искривленный в капиллярах и плоский в стакане. Как уже упоминалось, термодинамическая пара есть первая форма явления в эволюционном ряду, достигающая в своем развитии уровня самофункционирования. Это замечательное свойство встречается затем во всех последующих более сложных явлениях ряда. Как осуществляется это самофункционирование - видно на примере поверхностно-фильтрационной пары.

Для повышения эффективности фазового ПД надо увеличивать рабочее давление и снижать гидродинамическое сопротивление между искривленным и плоским менисками. Максимальное рабочее давление может быть достигнуто, если в ПД сочетаются плоский мениск с идеальным полусферическим, когда критерий конфигурации мениска (см. предыдущий параграф) В = 2. В этих идеальных условиях, например, для воды при Т = 35 К рабочее давление пара равно 5700 Па. Но достичь идеальных условий практически невозможно, поэтому реальное рабочее давление пара всегда ниже идеального.

В реальных условиях мениск жидкости формируется в ПД под действием напора ? (см. рис. 30, в и г). Согласно Лапласу, радиус кривизны мениска определяется этим напором и коэффициентом поверхностного натяжения жидкости, а от радиуса капилляра не зависит. Например, при напоре Н =10 мм радиус водяного мениска, по Лапласу, r = 0,73 мм. Если диаметр капилляра d =15 мкм и Т = 35 К, то критерий конфигурации мениска В = 1,0000264 и рабочее давление пара составляет 0,15 Па, что почти в 40000 раз ниже идеального случая. На рис. 30, г в отличие от в мениск формируется большим напором Н, в то время как гидродинамическое сопротивление пару на пути h снижено до минимума. Мощность ПД растет с увеличением числа капилляров, с этой целью используются капиллярно-пористые тела (мембраны) [ТРП, стр.459-462].

5. Нарушение закона Вольта.

Несколько других типов самофункционирующих термодинамических пар - циркуляционных вечных двигателей второго рода, нарушающих второй закон Клаузиуса и преобразующих теплоту одного источника (окружающей среды) в электроэнергию или работу с КПД 100%, основаны на использовании термоэлектрических явлений. Существует целый комплекс таких явлений; некоторые из них были известны давно (эффекты Вольта, Зеебека, Пельтье и Томсона), другие впервые теоретически предсказаны и экспериментально обнаружены в ОТ [18, с.313; 21, с.307]; все они могут быть применены для создания вечных двигателей второго рода.

В основу осуществления термоэлектрического устройства первого типа (ПД-14) положен эффект возникновения контактной разности потенциалов на границе соприкосновения двух разнородных веществ - металлов, полупроводников и диэлектриков. Этот эффект был открыт Вольта в 1797 г.

Хорошо известен закон Вольта, согласно которому при одной и той же температуре в правильно разомкнутой цепи, на концах которой находится один и тот же проводник первого рода (в проводниках первого рода не происходит химических реакций), суммарная разность потенциалов равна нулю. Другими словами, по Вольта, если составить замкнутую цепь из нескольких разнородных металлов, то в ней при изотермических условиях суммарная электродвижущая сила (ЭДС) и электрический ток должны быть равны нулю - это общеизвестная истина, которая вот уже почти 200 лет переходит из одного учебника физики в другой.

Однако в действительности дело обстоит несколько сложнее и в цепи, составленной из трех и более разнородных проводников, суммарная ЭДС и сила тока могут быть не равны нулю, то есть такая цепь может представлять собой типичный вечный двигатель второго рода. Рассмотрим более подробно теорию этого двигателя, но прежде выведем из ОТ закон Вольта, вникнем в физическую суть этого закона и покажем условия, при которых он нарушается.

Напишем уравнение третьего начала ОТ для вермической (термической) и электрической степеней свободы тела. С этой целью можно воспользоваться укороченными строчками (пятой и шестой) уравнения состояния (308). Имеем

   dT = A55d? + A56d?

   d? = A65d? + A66d?      (334)

Нас будет интересовать вторая строчка этого уравнения. Заменив в ней вермиор ? на температуру Т из первой строчки, приближенно получим

   d?  ? (A65/A55)dT + A66d?     (335)

   ?  ? (A65/A55)T + A66?     (336)

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки