Читаем Термодинамика реальных процессов полностью

Действительно, согласно исходному определению, порции (кванты) ротационного вещества должны придавать телам (ансамблям) способность как-то круговращаться, но свойствами протяженности и порядка положения они не обладают и, стало быть, не имеют массы  m (объема  ?). Это значит, что ротационное вещество, подобно хрональному и всем остальным, существует параллельно пространству, «размазано» в его объеме. Следовательно, если бы ансамбль не содержал квантов метрического вещества, тогда ротационное вещество, существующее параллельно с метрическим, наделяло бы свойством круговращения лишь скрепленные с ним другие вещества и не затрагивало пространства. В результате круговращение такого без (вне) пространственного ансамбля не сопровождалось бы перемещением активных квантов метрического вещества (массы) относительно пассивных (парена) и законы механики были бы ни при чем, ротационное явление обходилось бы без них. Только благодаря тому что ансамбль содержит кванты метрического вещества, происходит увлечение массы и вступают в действие законы механики. Таким образом, суть дела фактически сводится к эффекту увлечения, который порождается универсальным взаимодействием, а формулы (249)-(251) отражают количественную сторону этого эффекта. Указанное обстоятельство, а также неспецифичность экстенсора и интенсиала в уравнении (251) делают кинетовращательное явление условно простым с ограниченной областью применимости.

При всем том продолжает оставаться открытым вопрос о количественном определении экстенсора и интенсиала для основного истинно простого ротационного явления. Возможно, что в качестве экстенсора  Еr  можно было бы выбрать плоский угол  ? , измеряемый в радианах, либо телесный угол  Qг , измеряемый в стерадианах. Тогда размерность интенсиала  Р , в первом случае будет равна Дж/рад, а во втором - Дж/стер. Второй случай - круговращение одновременно в трех измерениях - труднее себе вообразить, но оба они в равной мере допускают изменение знака круговращения (силового взаимодействия) в условиях отражения частиц от зеркала. В принципе не исключено круговращение и в одном измерении. Характер круговращения должен как-то проявлять себя в процессах особого рода поляризации при отражении. Здесь решающее слово должно принадлежать опыту [ТРП, стр.259-261].

11. Простое вибрационное явление.

В соответствии с парадигмой в ОТ постулируется существование простой вибрационной формы явления (от латинского vibratio – колебание, дрожание), состоящего из вибрационного вещества и его поведения. Вибрационное вещество, как и ротационное, существует параллельно с пространством. Главный специфический признак вибрационного вещества заключается в том, что оно сообщает телам природы вибрационные, колебательные свойства.

Мерой количества вибрационного вещества, или вибрационным экстенсором, служит вибрациор  Е?  , мерой качества поведения вибрационного вещества, или вибрационным интенсиалом, - вибрациал  Р? , вибрационная работа

   dQ? = P? dE? = dU      (252)

 Вибрационное явление строго подчиняется всем законам ОТ. В наномире вибрационное вещество обладает силовыми свойствами, в микромире – дискретными, в макромире – континуальными. Вибрационное вещество мы пока не умеем ни наблюдать, ни измерять, поэтому не в состоянии присвоить вибрациору и вибрациалу необходимые специфические размерности. Известные представления о свойствах вибрационного явления можно получить на основе анализа условно простых планковского, колебательного и волнового явлений, вытекающих из вибрационного в качестве частных случаев [ТРП, стр.261-262].

 12. Условно простое микровибрационное (планковское) явление.

В 1900 г. М. Планк предложил известную формулу, определяющую энергию фотона через его частоту колебаний ? и квант действия (постоянная Планка)  h . В нашей интерпретации эта формула имеет вид [18, с.58; 21, с.120]

    QП = ?h = U       (253)

где

   h = 6,62491?10-34      (254)

В элементарном акте взаимодействия величина  h (Дж?с) играет роль экстенсора, частота  ?  (с-1) - роль интенсиала, а все явление, определяемое уравнением (253), можно рассматривать как некое микроскопическое вибрационное (планковское). Наличие у величин  h  и  ?  неспецифических размерностей, содержащих время, делает планковское явление условно простым, оно позволяет лучше понять основное вибрационное. В частности, этому будет способствовать более глубокое изучение колебательных движений фотонов и других микрочастиц в процессах поляризации, дифракции и интерференции [ТРП, стр.262].

 13. Условно простое колебательное явление.

Другим частным случаем простого вибрационного явления служит условно простое колебательное. В макромире оно определяет процесс распространения в твердой, жидкой и газообразной средах упругих волн - вибраций, звука и т.д. Роль экстенсора играет величина  Ек  (кг), интенсиала -  Рк  (м2/с2), вибрационная работа [18, с.43; 21, с.116]

   dQk = PkdEk = dU      (255)

   Ek = ??tF       (256)

   Pk = a2?2       (257)

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки