Читаем Термодинамика реальных процессов полностью

Хорошей иллюстрацией к истинно простому ротационному явлению служит условно простое спиновое. Понятие спина было введено в науку Дж. Уленбеком и С. Гаудсмитом в 1925 г. применительно к электрону. Спин определяет внутренний момент количества движения микрочастицы и не связан с перемещением частицы как целого, поэтому для объяснения спина образ вращающегося тела может быть использован лишь грубо приближенно. Факт существования спина подтвержден экспериментом. Но мы не располагаем необходимыми понятиями для определения основного истинно простого ротационного явления. Спин выражается через постоянную Планка (размерность - Дж?с), следовательно, если его рассматривать как экстенсор, то интенсиал будет иметь размерность частоты вращения (с-1). Обе эти характеристики не удовлетворяют требованию своеобразия, поэтому спиновое явление не может считаться истинно простым. Условность спинового явления подтверждается также фактом нарушения закона сохранения количества и момента количества движения в определенных условиях. Все это ограничивает область применимости спинового явления (см. также параграф 14 гл. XV) [ТРП, стр.258-259].

 9. Условно простое вращательное явление.

Подобно тому как из метрического явления можно вывести перемещательное, подобно этому из ротационного можно найти условно простое вращательное, причем между перемещательным и вращательным явлениями существует известная аналогия. Вращательное явление характеризует поворот системы на некоторый угол под действием момента силы. Экстенсором для перемещательного явления служит угол поворота  ? , измеряемый в радианах, а интенсиалом - момент силы  М , равный силе, умноженной на длину плеча (Н?м). Работа вращения

dQ? = Md? = dU      (248)

Главная условность вращательного явления, как и перемещательного, заключается в том, что ему нельзя сопоставить определенное вещество, то есть угол поворота не служит мерой количества какого-либо вещества. Кроме того, интенсиал не обладает должной специфичностью. Подобно перемещению, вращение тела является процессом легко наблюдаемым, оно фиксируется по изменению угла поворота тела.

Впервые угол поворота и момент силы, характеризующие работу вращения, были введены в науку гениальным Леонардо да Винчи. В ОТ смысл вращательного явления несколько видоизменяется, оно становится частным случаем истинно простого ротационного, суть которого пока еще до конца не выяснена. Дополнительные сведения о ротационном явлении можно получить при анализе его третьего частного случая - кинетовращательного [ТРП, стр.259].

 10. Условно простое кинетовращательное явление.

В термодинамике кинетовращательное явление вначале было принято определять с помощью экстенсора МК , именуемого моментом количества движения (Дж?с), причем

    МК =I?       (249)

где I - момент инерции тела относительно оси вращения, Дж?с2 ; ? - угловая скорость (частота) вращения тела, с-1 . Интенсиалом служила угловая скорость  ? , следовательно, кинетовращательная работа

   dQМ = ?2d МК = ?d(I?) = dU    (250)

После того как нами было установлено, что момент количества движения не подчиняется закону сохранения, в качестве экстенсора был предложен момент инерции I . В результате кинетовращательная работа [21, с.113]

   dQI = ?2dI = dU      (251)

Как видим, кинетовращательное явление очень напоминает кинетическое. Сходство указанных явлений подчеркивается фактом, согласно которому уравнения (250) и (251) получаются из уравнений (243) и (244), если в последних массу и скорость заменить на момент инерции и угловую скорость. Подобную же замену допускают и законы механики Ньютона, они остаются одинаково справедливыми как для кинетического, так и для кинетовращательного явлений. Все это могло бы навести на мысль о несамостоятельности ротационного явления, о том, что условно простые вращательное и кинетовращательное явления вполне могут быть получены в качестве частных случаев не из ротационного, а из метрического и, следовательно, ротационное вообще утрачивает свое значение.

Однако такой вывод из всего предыдущего был бы слишком поспешным. Как показывает более глубокий анализ, на самом деле никакого сходства между ротационным, и метрическим явлениями нет: это два совершенно различных явления, каждому из которых присущи свои особые и неповторимые черты, и поэтому свести их друг к другу в принципе невозможно. Упомянутое сходство является кажущимся, оно обусловлено только тем, что метрическое явление вторгается в ротационное и таким способом навязывает ему свои собственные свойства. Иными словами, законы механики не затрагивают сути ротационного явления, а отражают лишь меру участия метрического явления в ротационном.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки