К числу условно простых следует отнести описанное в предыдущем параграфе явление, определяемое экстенсором ? и интенсиалом ? (см. формулу (241)), ибо эти характеристики не удовлетворяют требованию специфичности: объем ? выражается через линейный размер в кубе, а давление ? - через силу, приходящуюся на единицу площади. Необходимость уважения к индивидуальности экстенсора и интенсиала - их физическому содержанию и размерности - прямо вытекает из самого духа ОТ и вполне окупается при последующем использовании этих величин на практике. Хорошими примерами в этом отношении служат хрональные, термические и электрические экстенсоры и интенсиалы.
Как уже отмечалось, условно простое явление не способно во всех подробностях следовать законам ОТ. В нашем случае неприятности могут возникнуть, например, при определении давления (силы). Однако находить в опыте величину объема ? мы пока не умеем, поэтому трудно судить и о границах применимости обсуждаемого условно простого метрического явления [ТРП, стр.254].
4. Условно простое механическое явление.
Метрическая форма явления ранее была неизвестна, вместо нее в термодинамике рассматривается так называемое механическое явление, в котором роль экстенсора играет объем V , а роль интенсиала — давление р , причем механическая работа (см. формулу (43))
dL = pdV = - dQV = - dU
Нетрудно сообразить, что механическое явление вытекает как частный случай из условно простого метрического, определяемого формулой (241). Действительно, если известно соотношение между числом активных и пассивных метриантов системы, тогда через это соотношение легко находится связь между объемами dV и dQ и давлениями р и ? , причем величины dV и dQ имеют неодинаковые знаки.
Условность механического явления ycyгyбляeтся тем обстоятельством, что объем V охватывает метрическое вещество, одновременно находящееся в двух различных состояниях - пассивном и активном, то есть принадлежащее двум различным уровням эволюционного развития: наипростейшему (парен) и простому (ансамбль простых явлений) (см. параграф 7 гл. IV). Вещество парена, обладающей нулевой активностью, не взаимодействует с активными веществами, в том числе с активным пространством, а это, согласно изложенным выше правилам, непозволительно для истинно простого явления [ТРП, стр.254-255].
5. Условно простое перемещательное явление.
Другим частным случаем условно простого метрического явления служит перемещательное. Это явление тоже не самостоятельное, а условное, но в отличие от механического ему нельзя сопоставить какое-либо вещество. Экстенсор dx и интенсиал Рх для перемещательного явления представлены в формуле (28). Связь между экстенсорами и интенсиалами для механического (см. формулу (43)) и перемещательного явлений иллюстрируется рис. 1 и выражением (44). Взаимозависимость механического и условно простого метрического явлений отражена на рис. 6, в и г.
Главное характерное свойство условно простого перемещательного явления заключается в его универсальности: оно в единообразной форме определяет работу перемещения любого специфического вещества, кванты которого скреплены с квантами пространства. Благодаря этому всякую специфическую работу оказывается возможным выразить двояко: либо с помощью уравнения (28), либо с помощью уравнения (42), что нашло свое отражение в равенстве (94). Универсальность перемещательного явления делает его незаменимым также при определении работы универсального взаимодействия, без которого не может обойтись природа и немыслима ОТ и которое присуще всем без исключения веществам. Следовательно, ценность перемещательного явления состоит в его способности с количественной стороны охарактеризовать работу не только любого специфического взаимодействия, но также и универсального [ТРП, стр.255-256].
6. Условно простое кинетическое явление.
В течение длительного времени в термодинамике в качестве кинетического экстенсора, или кинетиора, применялось так называемое количество движения, или импульс:
K = m? (242)
а в качестве кинетического интенсиала, или кинетиала, - скорость ? при этом кинетическая работа [13, с.19; 15 с.32; 18 с.40]
dQK = ?dK = ?d(m?) = dU (243)
Затем мною было установлено, что количество движения не подчиняется закону сохранения, как того требует второе начало ОТ [20, с.242; 21, с.178]. Следовательно, величина К не может служить кинетическим экстенсором. Поэтому на роль кинетиора я избрал другую меру - массу m , а на роль кинетиала - квадрат скорости, причем кинетическая работа [20, с.212; 21, с.106]
dQm = ?2dm = dU (244)
Это уравнение является частным случаем формулы (239) для истинно простого метрического явления, если положить
? = ?2 (245)
а также частным случаем формулы (241) для условно простого метрического явления, если принять во внимание (240).