Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

В курсе аналитической геометрии кривые второго порядка обычно рассматриваются как множества точек на плоскости, обладающих определенными свойствами, причем эти свойства различны для различных кривых. Такой подход имеет много методических достоинств. Остановимся на проблемном введении определения эллипса, когда в условиях созданной лектором проблемной ситуации студенты вместе с преподавателем участвуют в процессе разрешения учебной проблемы.

Перед изучением темы “Эллипс” в конце предыдущей лекции рассматривается построение “некоторой” кривой “методом садовника” (нить закреплена в двух точках, а кривая очерчивается так, чтобы мел все время держал нить в натянутом состоянии). Лектор говорит, что полученная кривая имеет большое теоретическое и практическое значение, поэтому очень важно изучить свойства данной кривой (эллипса). Задается вопрос: “Можете ли вы указать какие-нибудь свойства эллипса?”. Студенты по чертежу легко определяют такие свойства, как симметрия, указывают интервалы знакопостоянства, монотонности, находят точки экстремума. Преподаватель подтверждает правильность ответов студентов, но подчёркивает, что этих свойств недостаточно, надо выявить неочевидные, “глубинные” свойства эллипса. Как это сделать? С чего начать? Создалась проблемная ситуация: студенты поставлены в состояние интеллектуального затруднения, когда предшествующих знаний недостаточно для изучения свойств кривой. Здесь студенты слабо осознают основную причину своих затруднений (учебную проблему), поэтому лектор стремится организовать мыслительную деятельность студентов на выявление и формулировку проблемы: “Что нужно прежде всего знать о кривой, чтобы иметь возможность изучить ей свойства средствами математики?”. Если нет правильной догадки, задается вопрос типа “Как изучить свойства спирали Архимеда?” Сразу раздаются возгласы: “А что это такое?” Лектор дает определение спирали Архимеда и возвращается к первоначальному вопросу. Теперь почти всегда студенты дают ответ: чтобы изучить свойства кривой, нужно, прежде всего, дать ее математическое определение. Так в результате анализа проблемной ситуации возникает конкретная проблема. После этого студенты получают задание к следующей лекции: дать определение эллипса, основываясь на способе его построения (нужно подсказать, что эллипс следует определить как множество точек, обладающих определенным свойством). На следующей лекции приведенные студентами определения анализируются.

Конечно, проблемное изложение рассмотренного вопроса можно провести и на одной лекции, все зависит от наличия учебного времени. В любом случае проблемное изложение требует больше времени, чем объяснительно-иллюстративное, но, на наш взгляд, экономить время на таких моментах нельзя.

Подчеркнем, что проблемная ситуация в данном случае создалась лишь потому, что речь шла о кривой, знакомой в общих чертах студентам из школы и жизненной практики, т.е. благодаря наличию противоречия между житейскими и научными знаниями. Отметим также, что первая проблема (изучение “неочевидных” свойств эллипса) непосильна для студентов и была поставлена лишь для того, чтобы студенты с первых же занятий уяснили необходимость математических определений объектов как первого этапа их изучения средствами математики. Поэтому лектор эвристическими подсказками сразу же сводит эту проблему к другой (дать определение эллипса), которая по отношению к первой является промежуточной проблемой, но дидактически является основной. Эта проблема уже вполне посильна для студентов.

Обратим внимание на неточности в определениях эллипса и гиперболы, часто встречающиеся в учебниках. Эти неточности состоят в том, что зачастую не оговаривается, что сумма расстояний от точки эллипса до фокусов должны быть больше расстояния между фокусами, а разность расстояний от точки гиперболы до фокусов по абсолютной величине должна быть положительной и меньшей расстояния между фокусами.

Полезно предложить студентам на лекции найти множества точек на плоскости, не лежащих на кривых, для которых:

сумма расстояний каждой точки до фокусов равна расстоянию между фокусами;

разность расстояний каждой точки до фокусов равна нулю;

разность расстояний каждой точки до фокусов равна расстоянию между фокусами.

Неточности (причем принципиального характера) встречаются в учебниках также при выводе уравнений кривых второго порядка. Действительно, при выводе уравнений кривых второго порядка приходится возводить в квадрат иррациональные выражения, что может, вообще говоря, привести к появлению “лишних” точек, не лежащих на этих кривых. Лектор должен обратить на это внимание студентов и сказать, что можно доказать эквивалентность приведенных преобразований, сообщив при этом план доказательства (само доказательство из-за громоздкости выкладок проводить, на наш взгляд, нецелесообразно).

Следует отметить, что указание на неточности в учебниках всегда производит большой эмоциональный эффект.

Перейти на страницу:

Похожие книги