Читаем Теория струн и скрытые измерения Вселенной полностью

Кривизна в двухмерном направлении полностью определяет риманову кривизну, которая, в свою очередь, содержит в себе всю возможную информацию о кривизне поверхности. В четырехмерном случае для описания кривизны необходимы двадцать чисел, для более высоких размерностей — еще больше. Тензор римановой кривизны может быть представлен в виде суммы двух слагаемых — тензора Риччи и так называемого тензора Вейля, на котором мы подробно останавливаться не будем. Главное, что из двадцати чисел, необходимых для описания римановой кривизны в четырехмерном случае, десять описывают кривизну Риччи и десять — кривизну Вейля.

Тензор кривизны Риччи, являющийся ключевым составляющим известного уравнения Эйнштейна, характеризует влияние материи и энергии на геометрию пространства-времени. По сути дела, левая часть этого уравнения представляет собой так называемый тензор Эйнштейна — модифицированный тензор Риччи, тогда как в правой части находится тензор энергии-импульса, описывающий плотность и поток материи в пространстве-времени. Иными словами, уравнение Эйнштейна связывает поток плотности материи и импульс в данной точке пространственно-временного континуума с тензором Риччи. Поскольку тензор кривизны Риччи является только частью общего тензора кривизны, как уже говорилось выше, невозможно определить кривизну в целом только на основании этого тензора. Надежду на определение кривизны пространства-времени дает нам знание глобальной топологии.

В частном случае, когда масса и энергия равны нулю, уравнение сводится к следующему: тензор Эйнштейна = 0. Это так называемое уравнение Эйнштейна для вакуума, и хотя на первый взгляд оно может показаться простым, не следует забывать, что это уравнение является нелинейным дифференциальным уравнением в частных производных, которые почти никогда не решаются просто. Более того, уравнение Эйнштейна для вакуума на самом деле представляет собой систему из десяти нелинейных дифференциальных уравнений в частных производных, поскольку тензор состоит из десяти независимых коэффициентов. Это уравнение очень похоже на гипотезу Калаби, которая предполагает равенство нулю кривизны Риччи. Нет ничего особо удивительного в том, что оно имеет так называемое тривиальное решение, которое не представляет никакого интереса: пространственно-временной континуум, в котором нет ни материи, ни гравитации и в котором в принципе ничего не происходит. Однако существует и более интригующая возможность и именно о ней идет речь в гипотезе Калаби: может ли уравнение Эйнштейна для вакуума также иметь и нетривиальное решение? И ответ на этот вопрос, как мы увидим в свое время, утвердительный.

Вскоре после того, как Черн в середине 1940-х годов сформулировал понятие классов Черна, он показал, что для многообразий с кривизной Риччи, равной нулю, то есть для многообразий определенной геометрии, первый класс Черна также должен обращаться в нуль. Калаби представил проблему в другом виде, задавшись вопросом, насколько топологические особенности пространства определяют его геометрию или, точнее, позволяют пространству иметь ту или иную геометрию. Обратное верно далеко не всегда. К примеру, известно, что гладкая поверхность, то есть не имеющая углов, гауссова кривизна которой больше единицы, должна быть ограниченной или компактной. Она не может простираться до бесконечности. Но в общем случае компактные гладкие поверхности не обязательно имеют метрику с гауссовой кривизной больше единицы.

Например, бублик является совершенно гладким и компактным, однако его гауссова кривизна далеко не везде положительна, не говоря уже о том, что она далеко не всегда больше единицы. На самом деле, как уже обсуждалось ранее, метрика с гауссовой кривизной, равной нулю, вполне возможна, а метрика, кривизна которой всюду положительна, — нет.

Таким образом, гипотеза Калаби столкнулась с двумя большими затруднениями: из того, что эта гипотеза представляла собой утверждение, обратное общеизвестному факту, еще не следовала ее истинность. И даже при условии ее истинности, доказать существование метрики, удовлетворяющей всем необходимым требованиям, чрезвычайно сложно. Подобно гипотезе Пуанкаре, появившейся ранее, гипотезу Калаби, точнее важный частный случай этой гипотезы, можно сформулировать одним предложением: «Компактное кэлерово многообразие, в котором первый класс Черна обращается в нуль, может иметь риччи-плоскую метрику». Однако для доказательства этого простого утверждения потребовалось более двух десятилетий. Ну а работа над всеми возможными следствиями из данного утверждения продолжается уже несколько десятилетий после его доказательства.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука