Рис. 4.4. На рисунке проиллюстрирован простой и весьма очевидный факт: квадрат имеет четырехкратную симметрию относительно его центра. Иными словами, повернув квадрат четыре раза на 90 градусов, мы получим исходную фигуру. Поскольку J-операция представляет собой поворот на 90 градусов, она также имеет четырехкратную симметрию, и четыре поворота приведут к исходному объекту. Формально говоря, J-операция действует только на касательные векторы, поэтому она — весьма грубый аналог вращения фигуры, подобной квадрату. J-преобразование, как обсуждается в тексте, является вещественным аналогом умножения на i. Умножение некого числа на i четыре раза равноценно умножению его на единицу, и оно, подобно проведенной четыре раза J-операции, неизбежно приведет к тому числу, с которого мы начали
Требование внутренней симметрии наложило на представленный Калаби математический мир ряд дополнительных ограничений, значительно упростив его и сделав проблему доказательства его существования потенциально разрешимой. Впрочем, Калаби не обратил внимания на некоторые другие следствия из его теории; на самом деле внутренняя симметрия, наличие которой он предположил для своих многообразий, является особой разновидностью суперсимметрии, что особенно важно для теории струн.
Последние два фрагмента нашей мозаики — классы Черна и кривизна Риччи — возникли из попыток геометров обобщить одномерные римановы поверхности на случай многих измерений и затем попытаться математически описать различия между ними. Это привело к возникновению важной теоремы, относящейся к компактным римановым поверхностям, — как, впрочем, и ко всем компактным поверхностям, не имеющим границ. Определение границы в топологии дается скорее на интуитивном уровне: диск имеет границу, или четко определенный край, тогда как сфера границы не имеет. На поверхности сферы можно сколь угодно долго двигаться в любом направлении, никогда не достигая никакой границы и даже не приближаясь к ней.
Теорема, сформулированная в XIX веке Карлом Фридрихом Гауссом и французским математиком Пьером Бонне, связала геометрию поверхности с ее топологией.
Согласно формуле Гаусса-Бонне, общая гауссова кривизна подобных поверхностей равна произведению эйлеровой характеристики поверхности на 2π. Эйлерова характеристика, обозначаемая греческой буквой χ («хи»), в свою очередь равна 2–2g, где g — это род (число «дырок» или «ручек» на данной поверхности). К примеру, эйлерова характеристика двухмерной сферы, не имеющей дырок, будет равна 2. Эйлер вывел отдельную формулу для нахождения эйлеровых характеристик любого многогранника: χ=V-E+F, где V — число вершин, E — число ребер, a F — число граней. Для тетраэдра χ=4-6+4=2, точно так же, как и для сферы. Для куба, имеющего 8 вершин, 12 ребер и 6 граней, χ=8-12+6=2 — снова то же, что и для сферы. Причина того, что эти топологически идентичные (хотя и геометрически различные) объекты имеют одинаковую величину заключается в том, что эйлеровы характеристики всецело определяются топологией объекта и не зависят от его геометрии. Эйлерова характеристика χ стала первым из основных топологических инвариантов пространства — величин, остающихся неизменными — инвариантными — для пространств, имеющих совершенно различный внешний вид, подобно являющимся топологически эквивалентными сфере, тетраэдру и кубу.
Вернемся к формуле Гаусса-Бонне. Общая гауссова кривизна двухмерной сферы будет равна 2π×2, или 4π. Кривизна двухмерного тора равна нулю, поскольку в нем имеется одна дырка и, следовательно, χ=2-2g=2-2=0. Обобщение принципа Гаусса-Бонне на случай большего числа измерений приводит к возникновению так называемых классов Черна. Классы Черна были созданы моим руководителем и наставником Ч. Ш. Черном как весьма грубый математический метод охарактеризовать различия между многообразиями. Говоря простыми словами, многообразия, для которых имеются разные классы Черна, не могут быть одинаковы, хотя обратное верно далеко не всегда: многообразия могут иметь один и тот же класс Черна и при этом оставаться различными.