Можно легко убедиться в том, что эти вектора действительно перпендикулярны, нарисовав точки (a, b) и (-b, a) на координатной плоскости и измерив углы между отрезками, выходящими из начала координат и заканчивающимися в данных точках. Операция, о которой идет речь, — преобразование координаты x в координату (-y), а координаты y в координату x — носит название J-преобразования, которое на вещественной плоскости является аналогом умножения на i на комплексной. Дважды проведенное J-преобразование (или J2) аналогично умножению вектора на -1. Дальнейшее объяснение будет идти именно в терминах поворотов (J-преобразований), а не в терминах умножения на мнимую единицу, поскольку процесс преобразования проще представить — не важно, в голове или на бумаге — на вещественной, а не на комплексной координатной плоскости. При этом нужно не забывать, что J-преобразование является только удобной иллюстрацией комплексного умножения на i путем перехода к двухмерным вещественным координатам.
Все эрмитовы многообразия имеют этот тип симметрии: J-преобразования поворачивают все вектора на 90 градусов, сохраняя их длины неизменными. Кэлеровы многообразия, представляющие собой подмножество эрмитовых многообразий, обладают такой же симметрией. Кроме того, кэлеровы многообразия обладают так называемой внутренней симметрией — специфическим типом симметрии, который должен сохраняться при перемещении между любыми двумя точками пространства с кэлеровой метрикой. Многие из видов симметрий, с которыми мы постоянно сталкиваемся в природе, относятся к группе вращений.
Сфера, к примеру, имеет глобальную симметрию — названную так, поскольку она работает относительно любой точки сферы. Одним из типов симметрии в данном случае является вращательная инвариантность, означающая, что при любом повороте сфера совпадает сама с собой. Симметрия кэлерова многообразия, с другой стороны, более локальна, поскольку она относится только к первым производным метрики. Однако благодаря методам дифференциальной геометрии, позволяющим осуществить интегрирование по всему многообразию, можно увидеть, что условие кэлеровости и связанная с ним симметрия подразумевают особое отношение между различными точками. Таким образом, симметрия, изначально охарактеризованная как локальная, при помощи интегрального исчисления приобретает более глобальную роль связующего звена между различными точками многообразия.
Основная проблема данного типа симметрии относится к особой разновидности преобразования, называемой параллельным переносом. Параллельный перенос, как и операция поворота, является линейным преобразованием: это преобразование подразумевает такое перемещение векторов вдоль определенной траектории на поверхности или многообразии, при котором сохраняются не только длины всех векторов, но и углы между любой парой векторов. В тех случаях, когда параллельный перенос сложно представить наглядно, точный путь перемещения векторов можно рассчитать при помощи метрики, решая дифференциальные уравнения.
На плоской, евклидовой поверхности все очень просто: нужно только сохранять направление и длину каждого вектора. На искривленных поверхностях и для произвольных многообразий условие постоянства длин и углов сохраняется, хотя и несколько усложняется по сравнению с евклидовым пространством.
Особенность кэлерова многообразия состоит в следующем: если при помощи операции параллельного переноса переместить вектор V из точки P в точку Q вдоль заданной траектории, то результатом этого перемещения станет новый вектор W1. Применив к вектору операцию поворота на 90 градусов (J-операцию), мы получим новый вектор JW1. С тем же успехом можно сначала применить к вектору V операцию поворота (J-операцию), в результате которой возникнет новый вектор JV, по-прежнему начинающийся в точке P. Если после этого параллельно перенести вектор JV в точку Q и полученный вектор назвать W2, то в случае кэлерова многообразия векторы JW1 и W2 будут идентичны вне зависимости от пути перемещения между точками P и Q. Можно сказать, что на кэлеровом многообразии J-операция инвариантна относительно параллельного переноса. Для комплексных многообразий в общем случае это не так. Можно сформулировать это условие и в другом виде: на кэлеровом многообразии параллельный перенос вектора с последующим его поворотом аналогичен повороту вектора с последующим параллельным переносом. Эти две операции коммутируют — поэтому не имеет значения, в каком порядке их выполнять. В общем случае это не так, как наглядно объяснил Роберт Грин: «Открыть дверь и затем выйти из дому — это далеко не то же самое, что выйти из дому и лишь затем открыть дверь».