Читаем Теория струн и скрытые измерения Вселенной полностью

Для того чтобы ответить на этот вопрос, рассмотрим кривую s и разделим ее на крошечные линейные участки — настолько крошечные, насколько это только можно представить, — и сложим их длины между собой. Длину каждого из линейных участков можно найти при помощи теоремы Пифагора. Для начала определим величины xy и s параметрически, то есть представим их как функции времени: x = X(t)y = Y(t) и s = S(t). Производные этих функций — X'(t) и Y'(t) — можно рассматривать как катеты прямоугольного треугольника; их подстановка в теорему Пифагора √([X'(t)]2+[Y'(t)]2) дает значение производной S'(t). Интегрирование от А до В позволяет определить длину всей кривой. В свою очередь каждый линейный сегмент представляет собой касательную к кривой, называемую в данном случае касательным вектором. Однако поскольку кривая находится на круге Пуанкаре, то перед интегрированием полученный результат нужно умножить на значение метрики √([X'(t)]2+[Y'(t)]2)×√(4/(1-x2-y2)2), чтобы ввести поправку на кривизну.

Для дальнейшего упрощения полученной картины приравняем Y(t) к нулю и таким образом ограничимся осью x. Затем начнем движение с постоянной скоростью вдоль оси x из точки 0 в точку 1. Если время также будет изменяться от 0 до 1, то уравнение движения будет иметь вид X(t) = t, и при Y(t) = 0, что предполагалось изначально, производная X'(t) = 1, поскольку производная от X в данном случае берется по отношению ко времени, а значение X всегда равно значению времени. Если представить производную в виде отношения, то последнее уравнение станет очевидным: в этом примере производная по X — это отношение изменения переменной X к изменению переменной X, а любое отношение такого вида — с одинаковым числителем и знаменателем — всегда равно 1.

Таким образом, пугающее своим видом выражение, полученное двумя абзацами выше, которое необходимо было каким-то образом проинтегрировать, чтобы получить из него длину, свелось к выражению 2/(1 — x2). Нетрудно заметить, что когда x стремится к единице, это отношение стремится к бесконечности, и точно так же стремится к бесконечности, или, как говорят математики, расходится, и его интеграл.

Важно отметить, что из стремления к бесконечности метрических коэффициентов — в данном случае G11 и G22 — еще не следует, что расстояние до границы также стремится к бесконечности. Но именно это имеет место в случае метрики Пуанкаре на единичном круге. Рассмотрим внимательнее, что происходит с этими значениями при движении в направлении от центра круга с течением времени. В начальной точке, где x = 0 и y = 0, оба коэффициента, G11 и G22 равны 4. Однако при приближении к границе круга, где сумма квадратов x и y близка к 1, метрические коэффициенты резко возрастают, как и длины тангенциальных векторов. К примеру, когда x = 0,7 и y = 0,7, G11 и G22 равны 10 000. При x = 0,705 и y = 0,705 значения коэффициентов будут больше 100 000; а для x = 0,7071 и y = 0,7071 — превысят 10 миллиардов. При приближении к границе круга эти коэффициенты будут не просто возрастать, но в конце концов устремятся к бесконечности — так же, как и расстояния до границы. Если бы вы были жуком, ползущим по поверхности в направлении границы круга, то, к величайшему огорчению, вы никогда бы ее не достигли. Впрочем, вы бы ничего не потеряли, поскольку данная поверхность не имеет границы в принципе. Если поместить открытый единичный круг на плоскость, то он приобретет границу в виде единичной окружности, являющейся частью данной плоскости. Но сам единичный круг Пуанкаре границы не имеет, и любой жук, пытающийся до нее добраться, умрет, так и не осуществив своей мечты. Этот непривычный и, возможно, противоречащий интуиции факт является результатом отрицательной кривизны единичного круга, обусловленной метрикой Пуанкаре.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука