Римановы поверхности, подобно обычным двухмерным многообразиям, являются гладкими, но из их комплексной природы — они являются одномерными комплексными многообразиями — следует наличие у них дополнительной встроенной структуры. Одна особенность, автоматически следующая из комплексной природы поверхности, но не всегда присущая действительным поверхностям, состоит в том, что все окрестности поверхности связаны друг с другом определенным образом. Спроецировав небольшой фрагмент искривленной римановой поверхности на плоскость и затем проделав ту же операцию для всех окружающих его фрагментов, можно получить карту, похожую на ту, которая получается при изображении трехмерного глобуса в двухмерном географическом атласе мира. Если сделать подобную карту на основе римановой поверхности, то расстояния между различными объектами на этой карте будут искажены, однако углы между ними сохранятся. Та же идея — сохранение углов за счет искажения расстояний — использовалась и на появившихся в XVI столетии картах, основанных на проекции Меркатора, которые представляли земную поверхность не в виде сферы, а в виде цилиндра. Сохранение углов при так называемом конформном отображении земного шара на карте в те времена было необходимо для целей навигации и помогало капитанам кораблей держать выбранный курс. Использование конформного отображения существенно упрощает расчеты, относящиеся к римановым поверхностям, делая возможным для таких поверхностей доказательство многих утверждений, недоказуемых для поверхностей, не являющихся комплексными. Наконец, римановы поверхности, в отличие от обычных многообразий, должны быть ориентируемыми, а это означает, что способ определения направлений — ориентация системы координат — не зависит от местоположения точки на поверхности. Противоположная ситуация имеет место для ленты Мёбиуса — классического примера неориентируемой поверхности, в процессе перемещения по которой направления могут меняться местами — низ становится верхом, левое — правым, направление по часовой стрелке переходит в направление против часовой стрелки.
Переход от одного участка римановой поверхности к другому приводит к изменению системы координат, и только небольшая окрестность каждой из заданных точек имеет вид евклидового пространства. Эти небольшие участки нужно сшить вместе так, чтобы переход от одного из них к другому не приводил к изменению углов. Именно это и имеют в виду, когда называют подобные переходы, или «преобразования»,
Рис. 4.2. Все эти двухмерные поверхности — бык, кролик, Давид и лошадь — являются примерами римановых поверхностей, имеющих огромную важность в математике и теории струн. Можно нанести на эти поверхности узор в виде шахматной доски, выбирая точки на шахматной доске, подставляя их координаты в некую функцию и получая в результате точку на поверхности, например кролика. Однако полученная в результате шахматная доска не будет идеальной, если только ее не отобразили на поверхность двухмерного тора, по причине присутствия на ней сингулярных точек, таких как северный и южный полюсы сферы, которые неизбежно возникают на поверхностях, эйлеровы характеристики которых (понятие эйлеровой характеристики будет подробно описано далее) не равны нулю. При этом, однако, процесс отображения является