Читаем Теория струн и скрытые измерения вселенной полностью

Конечно, Калаби не использовал в точности такие термины, когда выдвигал свою гипотезу. Его цель состояла в том, чтобы узнать, будет ли определенный вид комплексного многообразия, а именно пространство, являющееся компактным, то есть имеющим ограниченную протяженность, и «кэлеровым» — удовлетворяющим определенным топологическим условиям (имеющим определенную характеристику, известную как «обращение в нуль первого класса Черна»), — иметь риччи-плоскую метрику. Нужно признать, что все ключевые составляющие данной гипотезы весьма сложны для непосредственного восприятия, поэтому определение всех понятий, необходимых для понимания утверждения Калаби, таких как комплексные многообразия, геометрия и метрика Кэлера, первый класс Черна и кривизна Риччи, — потребует определенных усилий.

На протяжении данной главы всем этим понятиям будет дано объяснение. При этом основной идеей гипотезы является возможность — с математической и геометрической точек зрения — существования пространств, удовлетворяющих всему этому сложному набору требований.

Мне кажется, что такие пространства столь же редки, как алмазы, и гипотеза Калаби предоставляет карту, позволяющую их обнаружить. Зная, как решить уравнение для одного из многообразий и понимая общую структуру этого уравнения, при помощи той же идеи можно решить соответствующие уравнения для всех кэлеровых многообразий, удовлетворяющих заданным требованиям. Гипотеза Калаби предлагает существование общего правила, указывающего нам на то, что «алмазы» находятся именно в данном месте — или, иными словами, на то, что та метрика, которую мы ищем, существует. Даже если пока мы не способны увидеть ее во всей красе — мы не сомневаемся в том, что она действительно существует. Среди всех математических теорий эта казалась мне скрытым сокровищем — чем-то сродни неограненному алмазу.

Из этой идеи зародилась та работа, благодаря которой я получил сегодняшнюю известность. Можно сказать, что именно в этой работе я нашел свое истинное призвание. Вне зависимости оттого, в какой области мы работаем, мы все стремимся найти наше собственное призвание в жизни — то особое, для которого мы появились на этой земле. Для актера таким призванием может стать роль Стэнли Ковальски в пьесе Теннесси Уильямса «Трамвай “Желание”». Или заглавная роль в «Гамлете». Для пожарного это может быть победа над пожаром десятой категории сложности. Для криминалиста — поимка Врага Общества Номер Один. Ну а в математике найти свое призвание — значит найти ту задачу, работа над которой была предопределена тебе самой судьбой. Хотя, возможно, дело тут и не в судьбе. Может быть, достаточно просто наткнуться на задачу, которую ты можешь успешно решить.

Говоря откровенно, выбирая задачу для дальнейшей работы, я никогда особо не задумываюсь о том, какую роль в моей дальнейшей судьбе она может сыграть, напротив, в этих вопросах я стараюсь быть как можно более прагматичным. Моей целью является поиск новых направлений в математике, способных породить новые, неизвестные математические задачи, многие из которых и сами по себе будут интересны. Может оказаться и так, что меня заинтересует уже существующая проблема, если мне покажется, что ее решение может значительно раздвинуть горизонты той или иной области.

Гипотеза Калаби, известная к тому времени уже пару десятилетий, подходила именно под вторую категорию. Я обратил внимание на эту задачу на первом курсе аспирантуры, хотя порой мне казалось, что на самом деле это задача обратила на меня внимание. Ни одна из задач до того так не захватывала меня, как эта, поскольку я чувствовал, что ее решение может открыть дверь в совершенно новую область математики. Гипотеза Калаби отчасти затрагивала классическую проблему Пуанкаре, однако казалась мне более общей, так как из предположения Калаби следовало не только существование нового большого класса математических поверхностей и пространств, о которых до этого ничего не было известно, но и, возможно, она вела к новому пониманию пространства и времени. Для меня эта встреча с этой гипотезой была практически неизбежной: почти все дороги, по которым я двигался в своих первых исследованиях кривизны, неминуемо вели к ней.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука