В 1978 году мы с Питером Ли рассмотрели более сложную, зависящую от времени — динамическую ситуацию. В частности, мы исследовали уравнения, описывающие процессы распространения тепла через тело или многообразие. Мы рассмотрели случай, в котором одна из переменных, например энтропия — величина, характеризующая беспорядок системы, — изменяется во времени. Наиболее известным нашим вкладом в эту область стало неравенство Ли-Яу, описывающее с математической точки зрения процесс изменения теплового потока или другой аналогичной ему переменной во времени. Гамильтон и Перельман, в свою очередь, рассмотрели изменение во времени не теплового потока, как мы, а именно энтропии, отвечающей за беспорядок в системе. Соотношение Ли-Яу называется «неравенством», поскольку значение некой величины — в данном случае значение теплового потока или энтропии — в конкретной точке в определенный момент времени больше или меньше значения теплового потока или энтропии в той же точке в другой момент времени.
Наш подход дал в руки ученым количественный метод исследования процессов развития сингулярностей в нелинейных системах путем отслеживания расстояния между двумя точками с течением времени. Когда две точки сближаются настолько, что расстояние между ними становится равным нулю, вы получаете сингулярность. И сингулярность, и понимание этих сингулярностей является ключевым моментом для исследования процессов распространения тепла в целом. В частности, наш метод позволил подобраться к сингулярности настолько близко, насколько только это возможно, показывая, что происходило непосредственно перед столкновением — например, какова была скорость сближения точек. Это напоминает попытку реконструкции событий, предшествовавших автомобильной аварии.
Для того чтобы увидеть сингулярность крупным планом — или
Гамильтон воспользовался нашим подходом, чтобы более пристально взглянуть на поток Риччи, исследуя структуру сингулярностей, которые могут возникать в процессе преобразования. Введение неравенства Ли-Яу в модель потока Риччи оказалось сложной задачей, на которую Гамильтону потребовалось почти пять лет, поскольку те уравнения, с которыми он имел дело, характеризовались куда большей нелинейностью — и, следовательно, куда большей сложностью, чем наши.
Один из подходов Гамильтона заключался в исследовании особого класса решений, являющихся стационарными в определенной системе координат. Выбор подходящей системы координат позволяет упростить многие задачи — например, при рассмотрении движения людей, находящихся на вращающейся карусели, оптимальным будет выбор системы координат, вращающейся с той же скоростью, что и карусель. Путем отбора стационарных решений, являющихся более простыми для понимания, Гамильтон разработал оптимальный метод введения методов оценки Ли-Яу в свои уравнения. Это, в свою очередь, позволило ему уяснить динамику потока Риччи — то есть процессов движения и развития объектов. В частности, Гамильтон был очень заинтересован исследованием процесса порождения сингулярностей в результате сложного движения в пространственно-временном континууме. В конечном итоге ему удалось описать структуру всех возможных сингулярностей, которые могли бы возникнуть в процессе преобразования, хотя он и не мог доказать, что все эти сингулярности обязательно возникнут. Из тех сингулярностей, которые удалось идентифицировать Гамильтону, все, кроме одной, были устранимы — удалить их можно было при помощи методов топологической «хирургии», методики, разработанной и широко применяемой в четырехмерном пространстве. «Хирургические» процедуры весьма сложны, но при удачной реализации дают возможность убедиться в эквивалентности исследуемого пространства сфере, что и требовал Пуанкаре.