Читаем Теория струн и скрытые измерения вселенной полностью

Прежде чем приступить непосредственно к обсуждению доказательства данной гипотезы, необходимо для начала разобраться с упоминавшимися ранее понятиями, лежащими в ее основе. Гипотеза Калаби относится только к комплексным многообразиям. Понятие многообразия, как я уже говорил, аналогично понятию поверхности или пространства, но, в отличие от хорошо знакомых нам двухмерных поверхностей, многообразия могут иметь любую четную размерность, не обязательно равную двум. Ограничение по поводу четного значения размерности относится только к комплексным многообразиям, в общем случае многообразие может иметь как четную, так и нечетную размерность. По определению многообразия на малых или локальных участках имеют сходство с евклидовыми пространствами, но в больших, или так называемых глобальных, масштабах они демонстрируют заметное отличие. Так, к примеру, окружность представляет собой одномерное многообразие, и окрестность каждой из лежащей на ней точек можно уподобить отрезку прямой. Но в целом окружность совершенно не похожа на прямую линию. Теперь добавим еще одно измерение. Мы живем на поверхности сферы, которая представляет собой двухмерное многообразие. Взглянув на достаточно малый участок земной поверхности, можно обнаружить, что он имеет практически идеально плоскую форму как диск или фрагмент плоскости, несмотря на то что в целом эта поверхность искривлена и, следовательно, неевклидова. Если теперь выбрать на поверхности участок значительно большего размера, то отклонение от евклидовости станет очевидным, что приведет к необходимости сделать поправки на кривизну.

Одной из важных особенностей многообразий является их гладкость. Это свойство прямо вытекает из их определения, поскольку из сходства каждого малого участка поверхности с евклидовым пространством напрямую следует гладкость поверхности во всех точках. Геометры говорят о гладкости многообразия даже в том случае, если оно имеет некоторое количество «странных» точек, в которых условие локальной евклидовости не выполняется — например, точка пересечения двух линий. Такие точки носят название топологических сингулярностей, поскольку их в принципе невозможно сгладить. Вне зависимости то того, насколько мала выбранная вокруг такой точки окрестность, пересечение все равно останется пересечением.

Подобные вещи постоянно встречаются в римановой геометрии. В начале преобразования объект может быть гладким и простым для исследований, но стоит нам приблизиться к определенному пределу — скажем, постепенно заостряя его форму или срезая углы, — и возникновение сингулярности станет неизбежным. Впрочем, геометры обычно столь либеральны в этом вопросе, что даже пространство, имеющее бесконечно большое число сингулярностей, в их глазах все равно остается многообразием — в этом случае они называют его сингулярным пространством, или сингулярным многообразием, и рассматривают как предельную форму гладкого многообразия. При этом вместо двух линий, пересекающихся в одной точке, чаще рассматривают плоскости, результатом пересечения которых будет линия.

Это и есть грубое определение понятия многообразия. Теперь что касается слова «комплексное». Комплексным называется такое многообразие, каждой точке которого можно сопоставить определенное комплексное число. Подобное число имеет вид a + ib, где а и b — действительные числа, a i — так называемая мнимая единица, определяемая как квадратный корень из -1. Как и координаты точки на плоскости, которые можно изобразить на графике с двумя осями x и y, одномерные комплексные числа можно изобразить на графике с двумя осями, соответствующими вещественной и мнимой частям.

Комплексные числа полезны по нескольким причинам — прежде всего потому, что они дают возможность извлекать квадратные корни из отрицательных чисел. При помощи комплексных чисел можно решить квадратное уравнение вида ax2 + bx + c = 0 при помощи формулы, которую многие из вас учили в средней школе x = (-b ± (b2-4ac))/2a вне зависимости от того, какое значение имеют величины a, b и c. После того как комплексные числа введены, уже не нужно ломать руки в отчаянии, если дискриминант b2-4ac вдруг окажется отрицательным; несмотря на это, уравнение все равно будет иметь решение.

Комплексные числа важны, а иногда просто незаменимы для решения полиномиальных уравнений, содержащих одну или несколько переменных и постоянных. Задача, как правило, состоит в нахождении корней уравнения — точек, в которых значение полинома обращается в нуль. Если бы комплексных чисел не существовало, многие из подобных задач не имели бы решения. Наиболее простым примером является уравнение x2 + 1 = 0, не имеющее вещественных корней. Данное равенство будет верным, то есть полином обратится в нуль, только в случае когда x = i или x = -i.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука