Читаем Теория расчета оболочек нефтяных аппаратов полностью

В теории упругости при описании напряженного состояния вокруг точки выделяется элемент сплошной среды. Размеры этого элемента должны быть такими, чтобы обеспечивалось условие сплошности [27]. В точку этот элемент не стягивается, как некомпетентно писал один из моих оппонентов. И даже при стягивании в точку, направления кольцевых и главных напряжений не совпадут.

В теории тонких оболочек проблема оценки напряженного состояния не затрагивается. И возникновение проблемы подстановки кольцевых и меридиональных напряжений вместо главных напряжения является даже не ошибкой в классической теории, а неверным обращением с расчетными формулами инженерами.

Покажем эту ошибку в оценке напряженного состояния стенки тонкостенного сосуда (сосуда до 21 МПа).

Для этого покажем различие в направлениях кольцевых напряжений и главных напряжений, совмещенных в одной области. Аналогично тому, как при изгибе балки показывается отличие в направлениях главных напряжений от изгибающих [26].

В теории оболочек из стенки выделяется сегмент в виде трапеции с криволинейными основаниями, по граням которого действуют напряжения.

Совместим этот выделенный сегмент с кубическим элементом и покажем для упрощения только вид в плане (сверху):

На рисунке: Q – равнодействующая сил внутреннего давления, уравновешивается касательными напряжениями по граням кубического элемента. По этим же граням действуют нормальные напряжения, не совпадающие с кольцевыми напряжениями по направлению.

Касательные напряжения по противоположным граням заменим на равнодействующую силу, приложенную напротив силы Q (т.е. точка приложения выбрана посередине между векторами сил):

Теперь найдем ориентацию кубического элемента, по граням которого действуют только главные напряжения. То есть найдем площадки главных напряжений по методике [5], [26]. Для этого используем круг Мора. В результате получим:

Как видно из рисунка, установлено направление главных напряжений и площадок, по которым они действуют.

Теперь совместим найденные направления главных напряжений с направлениями кольцевых напряжений (аналогично тому, как в сопротивлении материалов это производится при изгибе балки [26]):

Как видно из рисунка, направления главных напряжений не совпадают с направлениями кольцевых напряжений. И кольцевые напряжения не являются главными напряжениями.

В теории упругости поднимается вопрос о нахождении напряжений по любым площадкам внутри кубического элемента. Площадку с кольцевым напряжением в качестве такой произвольной площадки под произвольным углом рассматривать нельзя.

Против приведенных данных возражение на основании [10,с.96] не выдерживает критики. В этой работе в рассмотрении условий пластичности для плоского напряженного состояния (а стенка не в плоском напряженном состоянии по третьей теории прочности) написано следующее:

«… главные оси тензора напряжений для плоского напряженного состояния обозначим через ξ и η.» и далее «… напряжения и будут отождествляться с , или .».

Эта запись означает, что оси ξ и η являются главными осями – осями главного тензора напряжений. А для главного тензора напряжений, главные напряжения в теории упругости в зависимости от величины обозначаются , или . И действительно, будет тождество на том основании, что те же самые оси и те же самые напряжения, на с другим обозначением.

В точку ни сегмент, ни кубически элемент не стягивается. Так как эти два твердых тела имеют минимальные размеры, но такие, чтобы обеспечивалось условие сплошности среды, то есть надмолекулярные размеры. Оппонировать с введением пределов «lim» и приравниванием главных напряжений к кольцевым является некорректным.

Также отметим, что кубический элемент сплошной среды находится в равновесии так как касательные напряжения по граням создают относительно ребер куба равные крутящие моменты. Равенство моментов происходит за счет равенства площадей граней куба. А у сегмента площади верхних сторон и боковых отличаются. Следовательно, сегмент в отличии от куба не может находится в равновесном состоянии.

Оценка прочности МКЭ имеет большее теоретическое обоснование.

Приведенные данные по определению направлений главных напряжений имеют второе значение по сравнению с ошибкой в осесимметричной задачи теории упругости. Эта ошибка будет показана ниже.

<p>8. Расчет оболочек сосудов методом конечных элементов</p>

В практике расчета оболочек сосудов и аппаратов, конструкция сосуда рассчитывается полностью в специализированном программном пакете или рассчитываются отдельные элементы конструкции, например, узлы врезок штуцеров, в программе МКЭ.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки