Цитата из работы известных авторов Даркова и Шапиро [11.с.596]: «…в связи с полярной симметрией цилиндра и нагрузки, нормальные напряжения являются главными напряжениями…». И дальше, что по площадкам главных напряжений отсутствуют касательные напряжения.
Задача Ламе приведена Г.Ламе во второй части его монографии по теории упругости в качестве примера применения выведенных им уравнений. Обоснованность полученных результатов решения применения формул Г.Ламе к расчету цилиндра определяется фактом отсутствия моментов в расчетной модели и в части замены кольцевого сегмента на кубический элемент. На основании рассмотрения расчетной модели можно сделать вывод о том, что расчетная модель в виде исходных данных к математическим выкладкам является неполной и, следовательно, результат решения задачи Ламе не является вполне корректным. Необходимо использовать подход с расчетной моделью, аналогичные используемым в теории тонких оболочек.
Теория толстых оболочек на основании решений задачи Ламе подробно изложена в работах академика Ильюшина А.А. [7,с.176].
Построение теории толстых оболочек производится для цилиндрической обечайки под действием одновременно внутреннего и внешнего давлений. Из стенки выделяется сегмент:
Почему-то принята расчетная модель сегмента с отсутствием касательных напряжений по боковым граням.
Разделяем понятия твердого тела и математического понятия тензора, которое используют в теории упругости для описания напряжения в точке.
Для осесимметричной оболочки в сферических координатах принято, что тензор напряжений выглядит в виде трапеции с криволинейными основаниями.
Отсутствие касательных напряжений по боковым граням объясняют симметрией такого тензора. Такое обоснование не справедливо, так как эти напряжения удерживают сегмент от вырова из параллельного круга. А на перпендикулярных гранях учитываемые касательные напряжения удерживают параллельные круги от взаимного смещения.
При переходе от прямоугольной системы координат к сферической системе координат меняется математическое описание тензора, но число сил и напряжений остается тем же в количестве 12 векторов.
Как видно, в тензоре в сферических координатах не учитывают касательные напряжения по боковым граням. Кроме того, для сравнения укажем, что эти напряжения присутствуют в расчетной модели теории тонких оболочек.
За счет этого расчетная модель, на которой строится осесимметричная задача теории упругости, являющаяся теорией толстых оболочек является некорректной.
Для плоской задачи теории упругости происходит такое же некорректное отбрасывание касательных напряжений за счет симметрии, как указано в работе Безухова [19,с.138]: «Если распределение напряжений симметрично относительно оси… Из условий симметрии вытекает, что касательное напряжение τrθ =0».
Это ошибка. Условия симметрии не названы.
Наличие напряжений не препятствует никаким условиям симметрии. Напряжения удерживают сегмент от вырова из кольца. Почему-то считается, что касательные напряжения по нижним граням в наличии и удерживают параллельные круги обечайки от смещения, а касательные напряжения по боковым граням, обеспечивающие сохранение этого параллельного круга от вырова из него сегментов должны отсутствовать.
Напряжения должны быть как в случае общего вида плоской задачи теории упругости. Если смотреть на сегмент сверху в плане:
__
Ильюшин [7,с.177] пишет: «Изменение прямого угла между гранями ВА и AD при деформации не происходит» и далее отсюда следует, что и удлинение равно нулю.
Это неверно. Между гранями не прямой угол, грань ВА криволинейная, является дугой. При деформации радиус дуги увеличивается. А следовательно и удлинение не равно нулю.
Далее Ильюшин пишет [7,с.177]: «Рассмотрим случай… Обобщенный закон Гука был ранее записан нами в декартовых координатах. Но так как мы рассматриваем деформированное и напряженное состояние в точке, то этот закон имеет тот же вид в любой криволинейной ортогональной системе координат…». Закон Гука должен быть записан в сферических координатах для твердого тела, но не для точки.
Для кубического элемента твердого тела (описываемого тензором) верно, для кольцевого сегмента полностью неверно так как касательные напряжения по одной из площадок препятствуют смещению колец обечайки цилиндра, а по второй площадке препятствуют отделению сегмента из состава кольца:
На основании симметрии кольцевого сегмента, его нельзя считать в качестве кубического элемента. А, следовательно, нельзя считать кольцевые напряжения по сторонам кольцевого сегмента в качестве главных напряжений.
Касаемо сравнения геометрий приведем следующее:
1) в теории упругости [5] указывается об условии равновесия кубического элемента, заключающегося в том, что должны быть равны площади перпендикулярных граней для равенства моментов от касательных напряжений (касательные напряжения по смыслу определяются как сумма касательных напряжений от элементарных площадок, расположенных по стороне элемента);