Сравнивая расчетные модели способов можно сделать вывод, что второй способ соответствует прочтению расчетной модели корпуса сосуда. То есть патрубок рассматривается как такая же оболочка что и обечайка, а подкрепление соответствует обечайке с укрепляющими кольцами.
Остается открытым вопрос о возможности применения этого способа к расчету фланцев штуцеров аппаратов и трубопроводов.
13. Теория расчета коробчатых оболочек сосудов
Коробчатая оболочка является сложной оболочкой, составленной из четырех пластин.
Коробчатая оболочка должна рассматриваться двояко: рассчитываются отдельные пластины (стенки коробчатой оболочки) и рассчитываются условия сопряжения стенок, т.е. оболочка здесь рассматривается как целая конструкция из четырех пластин (коробчатая обечайка).
Методом расчета должен быть выбран только тот метод, в котором применяется такая расчетная схема.
Для вертикального коробчатого сосуда, также как и для вертикального цилиндрического сосуда, расчетное давление должно быть постоянно в плоскости поперечного сечения сосуда (на каждой высотной отметке сосуда) и должно изменяться по высоте по линейному закону, в соответствии с увеличением гидростатического давления.
Методы расчета сосудов, в которых стенка рассчитывается как пластина на изгиб, не учитывают распределение давления по высоте сосуда и не должны применяться в расчете сосудов. Также необходимо учитывать условия сопряжения пластин. В методах, где коробчатая оболочка не рассматривается целиком, условия сопряжения не учитываются.
Установка внутренних пластин жесткости, связывающих стенки сосуда, изменяет расчетную модель коробчатой оболочки. Такие оболочки рассчитываются методами строительной механики.
Возвращаясь к расчетной модели, можно отметить следующее. По сложности из криволинейных оболочек в качестве примера можно привести оболочку торосферического днища, образованную сопряжением простых оболочек сферического сегмента и оболочки тора. Для торосферической оболочки в отдельности анализируются сферический сегмент, тор и место их сопряжения. Место сопряжения криволинейных оболочек в теории тонких оболочек рассчитывается на краевую нагрузку. Приведенный ниже метод расчета коробчатой оболочки академика Власова В.З. имеет некоторые отличия.
Расчет коробчатых оболочек по методу Власова
Расчет коробчатых оболочек от действия гидростатического давления приведен в работе [2.с.380] академика Власова В.З. В этой же работе Власова В.З. приведены расчеты для стенок коробчатых конусной воронки и расчет n-угольной оболочки.
Расчет коробчатой оболочки приведен Власовым в качестве примера разработанного им метода. Метод позволяет рассчитывать пластины по граничным условиям подвижного и неподвижного закрепления краев пластин. Для коробчатой оболочки принята расчетная схема с неподвижным закреплением.
Метод Власова состоит в сведении задачи к одномерной. Для этого введен обобщенный прогиб. Из оболочки выделяют поперечные прямоугольные сечения, которые рассматриваются как плоская рама с неподвижным соединением балок.
В [2.с.387] Власов приводит данные о совпадении уравнения изгиба пластины коробчатой оболочки с уравнениями для изгиба криволинейной оболочки. В этом случае уравнение изгиба криволинейной оболочки должно быть в рамках теории упругости. Так как уравнения по теории тонких оболочек по гипотезе Кирхгофа-Лява применяться к расчету пластин не могут. Потому что после подстановки в уравнение безмоментной теории радиусов кривизны, равных бесконечности, система трех уравнений прейдет в статически неопределимую систему двух уравнений. Теория криволинейных оболочек учитывает постоянный по сечению кольцевой момент, а на пластины коробчатой оболочки действует изгибающий момент, меняющийся по длине стороны пластины.
Расчет коробчатых корпусов сосудов под давлением по методу Власова может быть рекомендован к включению в нормативную методику.
14. Сопряжение простых оболочек в оболочки корпусов
Сопряжение оболочек для тонкостенных сосудов до 21МПа и толстостенных сосудов высокого давления выполняются по одинаковым условиям, состоящим в равенстве усилий и моментов по границе сопряжения (а также перемещений и поворотов сечений). Такое условие соответствует безмоментному состоянию оболочки.
Безмоментное состояние обеспечивается одинаковой геометрией оболочек в зоне сопряжения. Для эллиптического днища сопряжение с цилиндрической обечайкой корпуса обеспечивается выполнением цилиндрического участка отбортовки.
При наличии краевой нагрузки при отличающейся геометрии сопрягаемых оболочек, краевые усилия и моменты воспринимают края сопрягаемых оболочек и сварной шов. В качестве примера приведем сопряжения оболочек тора и сферического сегмента в торосферическом днище; сопряжение оболочек цилиндрической обечайки и шарового днища в корпусе сосуда.