Читаем Теория расчета нефтяных центробежных насосов полностью

В конечно-разностном методе, как указывается в работе [14,с.26], производная заменяется на алгебраическое отношение . При стремлении размеров ячейки сетки к нулю конечно-разностное отношение стремиться к производной , т.е. решение стремиться к решению дифференциального уравнения. При этом пределом является предел всего разностного уравнения, а не только его отдельных производных.

Операция дискретизации позволяет получить алгебраические уравнения, которые решаются вычислительными средствами применяемого компьютера.

Флетчер в работе [15,с.73] показал пример дискретизации на примере уравнения теплопроводности

на уравнение [15]

В этом уравнении параметр показывает параметр Т в узле (j, n) сетки.

Таким образом, в каждом из узлов находится значение , проблема нахождения непрерывного решения дифференциального уравнения решается нахождением суммы значений . Δ

Решение должно плавно изменяться в промежутках между узловыми точками элементов сетки. Решение в точках, не совпадающих с узловыми точками сетки, находится интерполяцией решений, полученных для окружающих её узловых точек [15,с.74].

Пример построения расчетной (дискретной) сетки по данным [15,с.74]:

Рис.2 – Расчетная сетка

Из указанного выше уравнения можно найти неизвестное по известным значениям на слое n (временном слое). Такая формула будет являться алгоритмом решения. Полное решение для сетки является суммой решений для всех узлов [13,с.74]:

Процесс дискретизации вносит ошибку. Для окрестности узла, в пределах которой вычисляется производная, ошибка дискретизации находится разложением в ряд Тейлора [12,с.82]. Главный член ряда достаточной корректно оценивает ошибку дискретизации при малой величине ΔА (стороне ячейки). Ошибка дискретизации является критерием оценки ошибки решения в зависимости от уменьшения размеров ячеек расчетной сетки.

<p>9. Метод конечных объемов</p>

По методу конечных объемов в пространстве проточной части насоса строится расчетная сетка, структурными элементами которой являются конечные объемы. Трехмерный конечный объем может быть представлен в виде куба, тетраэдра, гексаэдра. В элементе конечного объема уравнения решаются для точки, находящейся геометрическом центре этого элемента. Метод можно назвать «методом частиц в ячейках» [14,с.48].

Рис.3 Пример ячейки элемента конечного объема и приращения решения для смежных ячеек

Метод конечных объемов обеспечивает для исходный дифференциальных уравнений Навье-Стокса выполнение законов сохранения в интегральной форме, то есть обладает свойством консервативности [14,с.51]. Законы сохранения могут быть записаны для различных величин, например, массы, импульса и др.

Скорость накопления величины А (см. рис.3) в ячейке равна сумме конвективного и диффузионного притока в единицу времени [14,с.52]. По граням смежных ячеек решение интеграла должно быть одинаковым.

<p>10 Практика численного расчета и характеристики насоса</p>

Расчет проточной части центробежного насоса среди прочих авторов детально рассмотрен в монографии А.А. Алямовского [13]. Приведем представляющие интерес сведения по используемому в этой работе подходу к расчетам.

В 3D-модели вводят ограничения для создания внутренней области проточной части, например, добавляют заглушки и др. конструктивные элементы. Указывается, что заглушки необходимы для реалистичности и нужны во избежание образования вихрей на границе давления, которые ухудшают сходимость расчета. Данное положение не является обязательным к выполнению инженером-расчетчиком.

После введения ограничений для проточной части, указывается вращающаяся зона внутреннего объема. Течение в рабочем колесе (импеллере) рассчитывается во вращающейся системе координат [13,с.331], при этом в расчете для поверхностей корпуса насоса существует возможность назначить их неподвижными.

Разница давлений между патрубками всасывания и нагнетания показывается на графике сходимости [13,с.345]. Для обеспечения сходимости расчетной сетки, её корректируют под геометрию рассчитываемой проточной части. Корректировка сетки состоит в уплотнении и адаптации её частей под геометрическую конфигурацию проточной части. Сходимость сетки устанавливают по нахождению возмущений в пределах заданной величины.

Поле скоростей по длине лопасти колеса (то есть в радиальном направлении) и по поперечному сечению канала колеса в расчетных программах показывается на цветной диаграмме с отметками, являющейся шкалой. Пример таких графиков – cм. [13,с.345, 346].

Графические результаты расчета линий тока используются для корректировки геометрии проточной части насоса. Пример графика пространственных траекторий линий тока жидкости по проточной части показаны в [13,с.349].

А.А. Алямовский указывает о возможности прогнозирования появления кавитации по анализу графиков результатов расчета статического давления в каналах колеса [13,с.358].

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука